نوع مقاله : پژوهشی
نویسندگان
1 تهران، دانشگاه تربیت مدرس، دانشکده مهندسی شیمی، گروه مهندسی پلیمر، صندوق پستی 143-14115
2 زنجان، دانشگاه زنجان، دانشکده مهندسی، گروه مکانیک، صندوق پستی 45194-313
چکیده
کلیدواژهها
عنوان مقاله [English]
نویسندگان [English]
Extensive use of polymer composite materials in many industries has created needs for theoretical modeling tools and the ability to predict the behavior of these materials, namely their fatigue life. Fatigue life is a complex course and depends on material properties, environmental and operational conditions and some other parameters. This work presents an analytical method, based on kinetic logics which are able to predict the lifetime fracture strength and fatigue behavior analysis of carbon fiber-reinforced epoxy composites. The kinetic strength analyzes the mechanical behavior of material based on its molecular properties. Ring-shaped composite samples were used for empirical study of the model. The rings were obtained from the pipes fabricated by the filament winding method. Samples were subjected to cyclic fatigue testing under different strain conditions and evaluated the changes in the structure of composites by FTIR analysis and TGA. The data obtained from the FTIR tests were evaluated in order to propose a theoretical model. The results obtained in this investigation showed that the kinetic models can be as an alternative to the classical mechanical models which usually require expensive testing procedures along with complex calculation tasks. The kinetic model presented here can be used only for the composite samples fabricated according to the procedure described in this study, because they fracture in the transverse direction caused by failure of the matrix. Therefore, prediction of the fatigue lifetime using the developed models only needs to achieve the bond energy and activated volume by performing a few simple tests.
کلیدواژهها [English]