نوع مقاله : پژوهشی
نویسندگان
تهران، پژوهشگاه پلیمر و پتروشیمی ایران، پژوهشکده مهندسی، گروه مدل سازی و کنترل فرایند، صندوق پستی 112-14975
چکیده
کلیدواژهها
عنوان مقاله [English]
نویسندگان [English]
Polyolefin/polystyrene blends, prepared by mechanical mixing, were immiscible blends having two-phase structure with weak interface. An improvement in compatibility of PP and PS led to their enhanced blend properties and applications. The aim of this study was to investigate the effect of exfoliated graphene nanoplatelets (xGnP) on the compatibility of PP/PS (80:20) blend by their rheological and mechanical behaviors. Samples of the blends were prepared using an internal mixer through simultaneous feeding of the components into the mixing chamber. The properties of blends were evaluated by rheometry, scanning electron microscopy (SEM), thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC) and mechanical tests. Rheological results showed that addition of xGnP, led to an increase in storage modulus and complex viscosity, especially at low frequencies, probably due to the confinement of polymer chain motions. SEM observations on the morphology of blends revealed that increasing the xGnP content obviously reduced the domain diameter of the dispersed PS phase, indicating a good compatibilizing effect for xGnP. The addition of xGnP into the PP/PS blend increased the tensile modulus and decreased the elongation-at-break, resulting from the rigidity and intrinsic mechanical characteristics of the grapheme nanoplatelets. Crystallinity of the samples also increased with higher xGnP content, which could be assigned to the nucleating effect of graphene platelets. Moreover, thermal stability of the blends were improved by increasing the xGnP level because xGnP as an efficient compatibilizing agent with high thermal conductivity provided a more uniform heat distribution profile.
کلیدواژهها [English]