1.Tran M.P., Detrembleur C., Alexandre M., Jerome C., and Thomassin J.M., The Influence of Foam Morphology of Multi-Walled Carbon Nanotubes/Poly(methyl methacrylate) Nanocomposites on Electrical Conductivity, Polymer, 54, 3261-3270, 2013.
2.Zhang H.B., Yan Q., Zheng W.G., He Z., and Yu Z.Z., Tough Graphene-Polymer Microcellular Foams for Electromagnetic Interference Shielding, Appl. Mater. Interfaces, 3, 918-924, 2011.
3.Park K.Y., Lee S.E, Kim C.G., and Han J.H., Fabrication and Electromagnetic Characteristics of Electromagnetic Wave Absorbing Sandwich Structures, Compos. Sci. Technol., 66, 576-584, 2006.
4.Huo J., Wang L., and Yu H., Polymeric Nanocomposites for Electromagnetic Wave Absorption, Mater. Sci., 44, 3917-3927, 2009.
5.Jung W.K., Kim B., Won M.S., and Ahn S.H., Fabrication of Radar Absorbing Structure (RAS) Using GFR-Nanocomposite and Spring-Back Compensation of Hybrid Composite RAS Shells, Compos. Struct., 75, 571-576, 2006.
6.Oh J.H., Oh K.S., Kim C.G., and Hong C.S., Design of Radar Absorbing Structures Using Glass/Epoxy Composite Containing Carbon Black in X-Band Frequency Ranges, Composites: Part B, 35, 49-56, 2004.
7.Gurunathan T., Rao Chepuri R.K., Narayan R., and Raju K.V.S.N., Polyurethane Conductive Blends and Composites: Synthesis and Applications Perspective, Mater. Sci., 48, 67-80, 2013.
8.Peng M., Zhou M., Jin Z., Kong W., Xu Z., and Vadillo D., Effect of Surface Modifications of Carbon Black (CB) on the Properties of CB/Polyurethane Foams, Mater. Sci., 45, 1065-1073, 2010.
9.Li F., Qi L., Yang J., Xu M., Luo X., and Ma D., Polyurethane/Conducting Carbon Black Composites: Structure, Electric Conductivity, Strain Recovery Behavior, and Their Relationships, J. Appl. Polym. Sci., 75, 68-77, 2000.
10.Xiong C., Zhou Z., Xu W., Hu H., Zhang Y., and Dong L., Polyurethane/Carbon Black Composites with High Positive Temperature Coefficient and Low Critical Transformation Temperature, Carbon, 43, 1778-1814, 2005.
11.Chodak I., Omastova M., and Pionteck J., Relation Between Electrical and Mechanical Properties of Conducting Polymer Composites, J. Appl. Polym. Sci., 82, 1903-1906, 2001.
12.Novak I., Krupa I., and Chodak I., Relation Between Electrical and Mechanical Properties in Polyurethane/Carbon Black Adhesives, Mater. Sci. Lett., 21, 1039-1041, 2002.
13.Quievy N., Bollen P., Thomassin J.M., Detrembleur C., Pardoen T., Bailly C., and Huynen Isabelle, Electromagnetic Absorption Properties of Carbon Nanotube Nanocomposite Foam Filling Honeycomb Waveguide Structures, IEEE Trans. Electromagn. Compat., 54, 43-51, 2012.
14.Thomassin J.M., Pagnoulle C., Bednarz L., Huynen I., Jerome R., and Detrembleur C., Foams of Polycaprolactone/MWNT Nanocomposites for Efficient EMI Reduction, Mater. Chem., 18, 792-796, 2008.
15.Lee S.T. and Ramesh N.S., Polymeric Foams, CRC, USA, 1st ed., 1-6, 2004.
16.Rende D., Schadler L.S., and Ozisik R., Controlling Foam Morphology of Poly(methyl methacrylate) Via Surface Chemistry and Concentration of Silica Nanoparticles and Supercritical Carbon Dioxide Process Parameters, Chemistry, 2013, 1-13, 2013.
17.Foresta C., Chaumonta P., Cassagnaua P., Swobodab B., and Sonntag P., Polymer Nano-Foams for Insulating Applications Prepared from CO2 Foaming, Prog. Polym. Sci., 41, 122-145, 2015.
18.Soltani Alkouh M., Famili M.H.N., and Moeini M.H., The Investigation of Foaming Effect on Radar Absorbing Properties of PMMA/MWCNT Composites, Iran. J. Polym. Sci. Technol. (Persian), 28, 189-195, 2015.
19.Mokhtari Motameni Shirvan M. and Famili M.H.N., Effect of Stabilization on the Morphology of Polystyrene and Supercritical Carbon Dioxide Thermoplastic Foam, Iran. J. Polym. Sci. Technol. (Persian), 28, 505-515, 2016.
20.Mokhtari Motameni Shirvan M., Famili M.H.N., Soltani Alkouh M., and Golbang A., The Effect of Pressurized and Fast Stabilization on One Step Batch Foaming Process for the Investigation of Cell Structure Formation, J. Supercrit. Fluids, 112, 143-152, 2016.
21.Hong Y.K., Lee C.Y., Jeong C.K., Lee D.E., and Kim K., Method and Apparatus to Measure Electromagnetic Interference Shielding Efficiency and Its Shielding Characteristics in Broadband Frequency Ranges, Rev. Scie. Instrum., 74, 1098-1102, 2003.
22.Zhanga T., Huangb D., Yangd Y., Kanga F., and Gub J., Fe3O4/Carbon Composite Nanofiber Absorber With Enhanced Microwave Absorption Performance, Mater. Sci. Eng. B, 178, 1-9, 2013.
23.Zeng C., Hosseiny N., Zhang C., and Wang B., Synthesis and Processing of PMMA Carbon Nanotube Nanocomposite Foams, Polymer, 51, 655-664, 2010.
24.Balanis C.A., Advanced Engineering Electromagnetics, John Wiley and Sons, USA, 1st ed., 180-229, 1989.
25.Zhang H., Zhang J., and Zhang H., Electromagnetic Properties of Silicon Carbide Foams and Their Composites with Silicon Dioxide as Matrix in X-Band, Composites, Part A, 38, 602-608, 2007.
26.Kolokolova L. and Gustafson B.A.S., Scattering by Inhomogeneous Particles: Microwave Analog Experiments and Comparison to Effective Medium Theories, J. Quantitative Spectrosc. Radiat. Transf., 70, 611-625, 2001.
27.Zhang H., Zhang J., and Zhang H., Numerical Predictions for Radar Absorbing Silicon Carbide Foams Using a Finite Integration Technique with a Perfect Boundary Approximation, Smart Mater. Struct., 15, 759-766, 2006.
28.Aghajari E., Morady S., Famili M.H.N., Zakiyan E., and Golbang A., Responses of Polystyrene/MWCNT Nanocomposites to Electromagnetic Waves and the Effect of Nanotubes Dispersion,Iran. J. Polym. Sci. Technol. (Persian), 27, 193-201, 2014.
29.Arab-Baraghi M., Mohammadizadeh M., and Jahanmardi R., A Simple Method for Preparation of Polymer Microcellular Foams by In-Situ Generation of Supercritical Carbon Dioxide from Dry Ice, Iran. Polym. J., 23, 427-435, 2014.
30.Wee D., Seong D.G., and Youn J.R., Processing of Microcellular Nanocomposite Foams by Using a Supercritical Fluid, Fiber. Polym., 5, 160-169, 2004.
31.Zakiyan E., Famili M.H.N., and Ako M., Heterogeneous Nucleation in Batch Foaming of Polystyrene in Presence of Nanosilica as a Nucleating Agent, Iran. J. Polym. Sci. Technol. (Persian), 25, 231-240, 2012.