کاربرد هیدروژل‌ها در حذف آلاینده‌های آبی با روش جذب ‌سطحی

نوع مقاله : پژوهشی

نویسندگان

ارومیه، دانشگاه صنعتی ارومیه، گروه مهندسی شیمی، کدپستی 5716617165

چکیده

یون‌های سنگین فلزی (مانند Cd+2، وPb+2، وCu+2 و Mg+2) و آلاینده‌های آلی موجود در پساب‌های صنعتی (مانند رنگینه‌ها)، از عوامل اصلی آلودگی منابع آبی هستند. این آلاینده‌ها برای انسان، گیاهان و جانوران آبزی سمی هستند و باید پیش از دفع، از پساب حذف شوند. روش‌های تصفیه مختلفی مانند انعقاد و لخته‌سازی، اکسایش، فیلترکردن غشایی و جذب‌ سطحی برای حذف آلاینده‌ها از محیط آبی گزارش شده ‌است. اکثر این روش‌ها محدودیت‌ها و معایبی از دیدگاه‌های بازده، عملی‌بودن و اقتصادی به همراه دارند. روش‌ جذب‌ سطحی از بعد اقتصادی، انعطاف‌پذیری و سهولت طراحی فرایند و گستردگی جاذب‌های در دسترس به‌عنوان روش مؤثری برای حذف انواع آلاینده‌های آلی و غیرآلی موجود در محیط آبی پیشنهاد می‌شود. هیدروژل‌ها شبکه‌های پلیمری سه‌بعدی و انعطاف‌پذیری هستند که کاربردهای فراوانی در زمینه‌های زیست‌پزشکی، دارورسانی، کشاورزی، زیست‌فناوری و فرایندهای جداسازی دارند. با توجه ‌به خواص فیزیکی و شیمیایی ویژه هیدروژل‌ها مانند آب‌دوستی، تورم‌پذیری، ظرفیت جذب زیاد، وجود گروه‌های عاملی ویژه مختلف و اصلاح‌پذیری ساختار آن‌ها، علاقه به پژوهش در زمینه توسعه و استفاده از هیدروژل‌ها به‌عنوان جاذب در سامانه‌های تصفیه افزایش یافته ‌است. هیدروژل‌ها عملکرد چشمگیری در حذف محدوده گسترده‌ای از آلاینده‌های آبی مانند فلزات سنگین و رنگینه‌های سمی با روش جذب ‌سطحی نشان داده‌اند. با توجه به نبود جمع‌بندی از کاربرد هیدروژل‌ها در جذب ‌سطحی آلاینده‌ها، در این مقاله مراحل مختلف سامانه‌های تصفیه‌ بر پایه هیدروژل، عوامل مؤثر و سازوکار حذف آلاینده‌ها مرور شده است. همچنین، چالش‌های اصلی مطرح در این سامانه‌ها نظیر سینتیک و هم‌دمای جذب، محدوده pH عملیاتی، تداخل و بازیابی هیدروژل‌ها بحث و بررسی شده و در نهایت به ملاحظات مهم اقتصادی مانند پایداری، قابلیت بازمصرف هیدروژل‌ها و بازیابی آلاینده‌ها پرداخته شده ‌است.  

کلیدواژه‌ها


عنوان مقاله [English]

Application of Hydrogels in Adsorptive Removal of Aqueous Pollutants

نویسندگان [English]

  • Mehran Alizadeh
  • Elham Jalilnejad
  • Reza Rafiee
Faculty of Chemical Engineering, Urmia University of Technology, Postal code: 5716617165, Urmia, Iran
چکیده [English]

Heavy metal ions (e.g., Cd2+, Pb2+, Cu2+, Mg2+) and organic pollutants (like dyes) present in industrial wastewaters are one of the major causes of pollution of groundwater sources. These pollutants are toxic to humans, plants and aquatic life and should be removed from wastewater before disposal. Various treatment technologies have been reported to treat pollutants from aqueous media, such as coagulation and flocculation, oxidation, membrane filtration, and adsorption. Most of these methods are associated with some shortcomings and challenges in terms of applicability, efficiency, and cost. Based on economical aspect, flexibility and simplicity of design, and availability of wide range of adsorbents, adsorption is recommended as an effective method for removal of organic/inorganic pollutants from aqueous media. Hydrogels are three-dimensional flexible polymeric networks with extensive applications in the biomedical, pharmaceutical, agriculture, biotechnology and separation processes fields. Due to the unique physical and chemical characteristics of hydrogels, such as hydrophilicity, swelling ability, high adsorption capacity, the presence of various specific functional groups and modifiability, an increasing research interest in the development and application of novel hydrogels in water and wastewater treatment has emerged. Hydrogels have exhibited superior performance in the adsorptive removal of a wide range of aqueous pollutants including heavy metals and toxic dyes. Due to the lack of an overview on applications of hydrogels in adsorption of pollutants, this review investigates the different steps involved in the hydrogel-based treatment systems, the influencing factors and mechanisms of pollutants removal. Major challenges about adsorption kinetics, operational pH range, interference, and hydrogel recovery are discussed. Finally, important considerations like stability, reusability of hydrogels and resource recovery are discussed for economic and sustainability concerns.

کلیدواژه‌ها [English]

  • wastewater treatment
  • adsorption
  • Hydrogel
  • aqueous pollutants
  • recovery
  1. Singh N.B., Nagpal G., and Agrawal S., Water Purification by Using Adsorbents: A Review, Environ. Thechnol Innov., 11, 187-240, 2018.
  2. Shahidi A., Jalilnejad N., and Jalilnejad E., A Study on Adsorption of Cadmium(II) Ions from Aqueous Solution Using Luffa Cylindrica, Desalin. Water. Treat., 53, 1-10, 2013.
  3. Lakayan S., Baharlui A., and Jalilnejad E.,Application of Agricultural Wastes as Natural Adsorbent for Removal of Industrial Dyes, J. Stud. Color World. (Persian), 6, 27-43, 2017.
  4. Tang S.C.N., Wang P., Yin K., and Lo I.M.C., Synthesis and Application of Magnetic Hydrogel for Cr (VI) Removal from Contaminated Water, Environ. Eng. Sci., 27, 947-954, 2010.
  5. Rehman S., Siddiq M., Al-Lohedan H., Aktas N., Sahiner M., Demirci S., and Sahiner N., Fast Removal of High Quantities of Toxic Arsenate via Cationic Poly(APTMACl) Microgels, J. Environ. Manage., 166, 217-226, 2016.
  6. Ullah F., Hafiothman M.B., Javed F., Ahmad Z., and Akil H., Classification, Processing and Application of Hydrogels: A Review, Mater. Sci. Eng. C, 57, 414-433, 2015.
  7. Khan M. and Lo I., A Holistic Review of Hydrogel Applications in the Adsorptive Removal of Aqueous Pollutants: Recent Progress, Challenges, and Perspectives, Water Res., 106, 259-271, 2016.
  8. Sahiner N., Ozay O., and Aktas N., The Removal of Cyanide Ions from Aquatic Environments by Quaternizable Poly (4-vp) Hydrogels of Different Dimensions, Water Air Soil Pollut., 224, 1-13, 2013.
  9. Fang R., He W., Xue H., and Chen W., Synthesis and Characterization of a High Capacity Cationic Hydrogel Adsorbent and Its Application in the Removal of Acid Black 1 from Aqueous Solution, React. Funct. Polym., 102, 1-10, 2016.
  10. Merino S., Martín C., Kostarelos K., Prato M., and Vázquez E., Nanocomposite Hydrogels: 3D Polymer Nanoparticle Synergies for On-demand Drug Delivery, ACS Nano, 9, 4686-4697, 2015.
  11. Tang S.C.N., Lo I.M.C., and Mak M.S.H., Comparative Study of the Adsorption Selectivity of Cr (VI) onto Cationic Hydrogels with Different Functional Groups, Water Air Soil Pollut., 223, 1713-1722, 2012.
  12. Zhu Y., Zheng Y., Wang F., and Wang A., Monolithic Supermacroporous Hydrogel  Prepared from High Internal Phase Emulsions (HIPEs) for Fast Removal of Cu2+ and Pb2+, Chem. Eng. J., 284, 422-430, 2016.
  13. Nilchi A., Babalou A.A.,Rafiee R., and Sid Kalal H., Adsorption Properties of Amidoxime Resins for Separation of Metal Ions from Aqueous Systems, React. Funct. Polym., 68, 1663-1668, 2008.
  14. Ozay O., Ekici S., Baran Y., Aktas N., and Sahiner N., Removal of Toxic Metal Ions with Magnetic Hydrogels, Water Res., 43, 4403-4411, 2009.
  15. Peppas N.A., Bures P., Leobandung W., and Ichikawa H., Hydrogels in Pharmaceutical Formulations, Eur. J. Pharm. Biopharm., 50, 27-46, 2000.
  16. Alexandratos S.D., Ion-exchange Resins: A Retrospective from Industrial and Engineering Chemistry Research, Ind. Eng. Chem. Res., 48, 388-398, 2008.
  17. Buwalda S.J., Boere K.W., Dijkstra P.J., Feijen J., Vermonden T., and Hennink W.E., Hydrogels in a Historical Perspective: From Simple Networks to Smart Materials, J.Control. Release., 190, 254-273, 2014.
  18. Tang S.C.N., Yan D.Y.S., and Lo I.M.C., Sustainable Wastewater Treatment Using Microsized Magnetic Hydrogel with Magnetic Separation Technology, Ind. Eng. Chem. Res., 53, 15718-15724, 2014.
  19. Wu B., Yan D., Khan M., Zhang Z., and Lo I.M.C., Application of Magnetic Hydrogel for Anionic Pollutants Removal from Wastewater with Adsorbent Regeneration and Reuse, J. Hazard. Toxic Radioact. Waste., 21, 2016.
  20. Marefat Seyedlar R., Imani M., Atai M., and Nodehi A., Temperature-responsive Hydrogels: Materials, Mechanisms and Biological Applications, Iran. J. Polym. Sci. Technol. (Persian), 31, 211-237, 2018.
  21. Rahimi K. and Naghib M., Microfabrication of “GelMA” Hydrogels: A Review, Polymerization (Persian), 7, 50-62, 2017.
  22. Maghsoodnia A., Hydrogel-based Composites: A Review, Polymerization. (Persian), 6, 94-102, 2016.
  23. Vosoughi M. and Alemzadeh I., Controlled Release of Nutrients from Hydrogel Biopolymers, Iran. J. Polym. Sci. Technol. (Persian), 7, 119-123, 1994.
  24. Fooladi M. and Taghizadeh S.M., The New Methods for Controlled Drug Release by Polymeric Materials, Iran. J. Polym. Sci. Technol. (Persian), 6, 118-124, 1993.
  25. Peppas N.A. and Khare A.R., Preparation, Structure and Diffusional Behavior of Hydrogels in Controlled Release, Adv. Drug Deliv. Rev., 11, 1-35, 1993.
  26. Wichterle O. and Lim D., Hydrophilic Gels for Biological Use, Nature, 185, 117-118, 1960.
  27. Roorda W.E., Bodde H.E., De Boer A.G., and Junginger H.E., Synthetic Hydrogels as Drug Delivery Systems, Pharm. Weekbl. Sci. Ed., 8, 165-189, 1986.
  28. Kroschwitz J.I. and Mark H.F., Encyclopedia of Polymer Science and Technology, 4th ed. Wiley-Interscience, Hoboken, New Jersey, USA, 2003.
  29. Ahmed E.M., Hydrogel: Preparation, Characterization, and Applications, J. Adv. Res., 6, 105-121, 2015.
  30. Thakur V.K., and Thakur M.K., Recent Trends in Hydrogels Based on Psyllium Polysaccharide: A Review, J. Clean Prod., 82, 1-15, 2014.
  31. Shinde U.P., Yeon B., and Jeong B., Recent Progress of In Situ Formed Gels for Biomedical Applications, Prog. Polym. Sci., 38, 672-701, 2013.
  32. Rafiee R., Babalou A.A, Nilchi A., and Razavi Aghjeh M.K., Parametric Studies on the Synthesis of Amidoximated Adsorbent Resins, J. Appl. Polym. Sci., 126, 1069-1076, 2012.
  33. Young R.J. and Lovell P.A., Introduction to Polymers, 3rd ed. CRC, 2011.
  34. Hasirci V., Yilgor P., Endogan T., Eke G., and Hasirci N., Polymer Fundamentals: Polymer Synthesis, Compr. Biomater., 1, 349-371, 2011.
  35. Rao P., Lo I.M.C., Yin K., and Tang S.C.N., Removal of Natural Organic Matter by Cationic Hydrogel with Magnetic Properties, J. Environ. Manage., 92, 1690-1695, 2011.
  36. Yang X. and Ni L., Synthesis of Hybrid Hydrogel of Poly(AM-co-DADMAC)/Silica Sol and Removal of Methyl Orange from Aqueous Solutions, Chem. Eng. J., 209, 194-200, 2012.
  37. Capek I., On Inverse Miniemulsion Polymerization of Conventional Water-soluble Monomers,  Adv. Colloid Interface Sci., 156, 35-61, 2010.
  38. Oh J.K., Drumright R., Siegwart D.J., and Matyjaszewski K., The Development of Microgels/Nanogels for Drug Delivery Applications, Prog. Polym. Sci., 33, 448-477, 2008.
  39. Soni G. and Yadav K.S., Nanogels as Potential Nanomedicine Carrier for Treatment of Cancer: A Mini Review of the State of the Art, Saudi Pharm. J., 24, 133-139, 2016.
  40. Peppas N.A., Ottenbrite R.M., Park K., and Okano T., Biomedical Applications of Hydrogels Handbook. Springer Science and Business Media, New York, 2010.
  41. Elbert D.L., Liquid-liquid Two-phase Systems for the Production of Porous Hydrogels and Hydrogel Microspheres for Biomedical Applications: A Tutorial Review, Acta. Biomater., 7, 31-56, 2011.
  42. Nilchi A., Rafiee R., and Babalou A.A., Adsorption Behavior of Metal Ions by Amidoxime Chelating Resins, Macromol. Symp., 274, 101-108, 2008.
  43. Sahiner N., Colloidal Nanocomposite Hydrogel Particles, Colloid. Polym. Sci., 285, 413-421, 2007.
  44. Pelton R. and Hoare T., Microgels and Their Synthesis: An Introduction. Microgel Suspensions: Fundamentals and Applications, Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim, Germany, 2011.
  45. Ogata T., Nagayoshi K., Nagasako T., Kurihara S., and Nonaka T., Synthesis of Hydrogel Beads Having Phosphinic Acid Groups and Its Adsorption Ability for Lanthanide Ions, React. Funct. Polym., 66, 625-633, 2006.
  46. Kaşgöz H., Özgümüş S., and Orbay M., Modified Polyacrylamide Hydrogels and Their Application in Removal of Heavy Metal Ions, Polymer, 44, 1785-1793, 2003.
  47. Singh T. and Singhal R., Kinetics and Thermodynamics of Cationic Dye Adsorption onto Dry and Swollen Hydrogels Poly(acrylic acid-sodium acrylate-acrylamide) Sodium Humate,  Desalin. Water Treat., 53, 3668-3680, 2015.
  48. Samandari S., Gulcan H.O., and Gazi M., Efficient Removal of Anionic and Cationic Dyes from an Aqueous Solution Using Pullulan-graft Polyacrylamide Porous Hydrogel, Water Air Soil Pollut., 225, 1-14, 2014.
  49. Zheng Y., Zhu Y., and Wang A., Highly Efficient and Selective Adsorption of Malachite Green onto Granular Composite Hydrogel, Chem. Eng. J., 257, 66-73, 2014.
  50. Zhao W., Jin X., Cong Y., Liu Y., and Fu J., Degradable Natural Polymer Hydrogels for Articular Cartilage Tissue Engineering, J. Chem. Technol. Biotechnol., 88, 327-39, 2013.
  51. Jing G., Wang L., Yu H., Amer W.A., and Zhang L., Recent Progress on Study of Hybrid Hydrogels for Water Treatment, Collids Surf. A: Physicochem. Eng. Asp. 416, 86-94, 2013.
  52. Gil E.S. and Hudson S.M., Stimuli-responsive Polymers and Their Bioconjugates, Prog. Polym. Sci., 29, 1173-1222, 2004.
  53. Ghasemzadeh M.H. and Keshavarz Ghasemi A., Controlled Release of Indomethacin Prepared from Smart Hydrogels Based on Starch, Acrylic Acid and b-Cyclodextrin as a Nanocarrier, Iran. J. Polym. Sci. Technol. (Persian), 29, 497-506, 2017.
  54. Suzuki M., Amphoteric Poly(vinyl alcohol) Hydrogel as a Material of Artificial Muscle Kobunshi Ronbunshu, 46, 603-611, 1989.
  55. Park H. and Park K., Hydrogels in Bioapplications, ACS Symposium Series, ACS, New York, 2-10, 1996. 
  56. Wilson A.M. and Justin G.A., Electroconductive Hydrogels, Biomedical Applications of Hydrogels Handbook, Springer. 319-337, 2010.
  57. Yue Z., Moulton S.E., Cook M., O’Leary S., and Wallace G.G., Controlled Delivery for Neuro-bionic Devices, Adv. Drug Deliv. Rev., 65, 559-569, 2013.
  58. Fonner J.M., Forciniti L., Nguyen H., Byrne J.D., Kou Y.F., Syeda Nawaz J., and Schmidt C.E., Biocompatibility Implications of Polypyrrole Synthesis Techniques, Biomed. Mater., 3, 2008.
  59. Vosoughi S., Hojjati S.M., and Kasraian A., Preparation and Study on Properties Superabsorbent Hydrogel Composite of Acrylamide-Acrylic Acid and Zeolite in Agricultural Uses, Iran. J. Polym. Sci. Technol. (Persian), 30, 391-404, 2018.
  60. Demitri C., Scalera F., Madaghiele M., Sannino A., and Maffezzoli A., Potential of Cellulose-based Superabsorbent Hydrogels as Water Reservoir in Agriculture, Int. J. Polym. Sci., 2013, 1-6, 2013.
  61. Cochran S. and Brockman T., A Cosmetic Ingredient Innovation for the Stabilization and Delivery of Volatile Fluoroether with Cosmetic Applications, J. Cosmet. Sci., 58, 413-419, 2006.
  62. Patravale V. and Mandawgade S., Novel Cosmetic Delivery Systems: An Application Update,  Int. J. Cosmet. Sci., 30, 19-33, 2008.
  63. Jalilnejad E., Fakhraddinfakhriazar S., and Alizadeh M., Evaluation of Airlift Reactor with Net Draft Tube and Its Applications in Bioprocesses, 5th International Conference on Recent Innovations in Chemistry and Chemical Engineering, Tehran, Iran, 2 February, 2018.
  64. Schmitt C. and Turgeon S.L., Protein/Polysaccharide Complexes and Coacervates in Food Systems, Adv. Colloid. Interf. Sci., 167, 63-70, 2011.
  65. Bai B., Li L., Liu Y., Liu H., Wang Z., and You C., Preformed Particle Gel for Conformance Control: Factors Affecting Its Properties and Applications, SPE Reserv. Eval. Eng., 10, 415-422, 2007.
  66. Zhao G., Wu X., Tan X., and Wang X., Sorption of Heavy Metal Ions from Aqueous Solutions: A Review, Open Colloid. Sci. J., 4, 19-31, 2011.
  67. Didehban K.H., Hasani Moghaddam S.H., and Azimvand J., Polymer Hydrogels Based on Acrylic Acid and Acrylamide and Their Applications to Remove Cationic Dye of Basic Red 46 (BR46) from Aqueous Solutions, Iran. J. Polym. Sci. Technol. (Persian), 31, 27-41, 2018.
  68. Barakat M.A. and Sahiner N., Cationic Hydrogels for Toxic Arsenate Removal from Aqueous Environment, J. Environ. Manage., 88, 955-961, 2008.
  69. Sahiner N., Ozay O., Aktas N., Blake D.A., and John V.T., Arsenic (V) Removal with Modifiable Bulk and Nano Poly(4-vinylpyridine) Based Hydrogels: The Effect of Hydrogel Sizes and Quarternization Agents, Desalination, 279, 344-352, 2011.
  70. Pirgalıoğlu S., Özbelge T.A., Özbelge H.Ö., and Bicak N., Crosslinked Poly(DADMAC) Gels as Highly Selective and Reusable Arsenate Binding Materials, Chem. Eng. J. 262, 607-615, 2015.
  71. Sari M., Removal of Acidic Indigo Carmine Textile Dye from Aqueous Solutions Using Radiation Induced Cationic Hydrogels, Water Sci. Technol., 61, 2097-2104, 2010.
  72. Kundakci S., Üzüm Ö.B., and Karadağ E., Swelling and Dye Sorption Studies of Acrylamide/2-acrylamido-2-methyl-1-propanesulfonicacid/bentonite Highly Swollen Composite Hydrogels, React. Funct. Polym., 68, 458-473, 2008.
  73. Kono H., Oeda I., and Nakamura T., The Preparation, Swelling Characteristics, and Albumin Adsorption and Release Behaviors of a Novel Chitosan-based Polyampholyte Hydrogel, React. Funct. Polym., 73, 97-107, 2013.
  74. Plazinski W., Rudzinski W., and Plazinska A., Theoretical Models of Sorption Kinetics Including a Surface Reaction Mechanism: A Review, Adv. Colloid Interface Sci., 152, 2-13, 2009.
  75. Nethaji S., Sivasamy A., and Mandal A.B., Adsorption Isotherms, Kinetics and Mechanism for the Adsorption of Cationic and Anionic Dyes onto Carbonaceous Particles Prepared from Juglans Regia Shell Biomass, Int. J. Environ. Sci. Technol., 10, 231-242, 2013.
  76. Sharma Y.C., Jalilnejad E., and Yarusova S., Investigation of Adsorption Characteristics of an Engineered Adsorbent for Removal of Hexavalent Chromium from Aqueous Solutions, Int. J. Environ. Sci. Dev., 8, 195-199, 2017.
  77. Wang L., Hung Y.T., and Shammas N., Advanced Physicochemical Treatment Processes, Humana, ‎New York,  2006.
  78. Baharlui A., Jalilnejad E., and Sirousazar M., Fixed-bed Column Performance of Methylene Blue Biosorption by Luffa Cylindrica: Statistical and Mathematical Modeling, Chem. Eng. Commun., 205, 1537-1554, 2018.
  79. Tang S.C.N., and Lo I.M.C., Magnetic Nanoparticles: Essential Factors for Sustainable Environmental Applications, Water Res., 47, 2613-2632, 2013.
  80. Ambashta R.D., and Sillanpää M., Water Purification Using Magnetic Assistance: A Review. J. Hazard. Mater., 180, 38-49, 2010.
  81. Ozay O., Ekici S., Baran Y., Kubilay S., Aktas N., and Sahiner N., Utilization of Magnetic Hydrogels in the Separation of Toxic Metal Ions from Aqueous Environments, Desalination, 260, 57-64, 2010.
  82. Lazaridis N.K., Peleka E.N., Karapantsios T.D., and Matis K.A., Copper Removal from Effluents by Various Separation Techniques, Hydrometallurgy, 74, 149-156, 2004.
  83. Al-qudah Y.H.F., Mahmoud G.A., and Abdel Khalek M.A., Radiation Crosslinked Poly(vinyl alcohol)/Acrylic Acid Copolymer for Removal of Heavy Metal Ions from Aqueous Solutions, J. Rad. Res. Appl. Sci., 7, 135-145, 2014.
  84. Muya F.N., Sunday C.E., Baker P., and Iwuoha E., Environmental Remediation of Heavy Metal Ions from Aqueous Solution Through Hydrogel Adsorption: A Critical Review, Water Sci. Technol., 73.5, 983-992, 2016.
  85. Baharlui A., Jalilnejad E., andSirousazar M., Investigation of the Adsorption Efficiency of Methylene Blue on Iranian Luffa Cylindrica: Effects of Temperature and pH, J. Appl. Chem. (Persian), 43, 193-212, 2016.
  86. Baharlui A. and Jalilnejad E., Evaluation of Isotherms of Adsorption of Heavy metals onto Luffa Cylindrica, 4th National Conference of Science and Separation Engineering, Babol, Iran, 9 May, 2017.
  87. Foo K.Y. and Hameed B.H., Insights into the Modeling of Adsorption Isotherm Systems, Chem. Eng. J., 156, 2-10, 2010.
  88. Ramos M.L.P., González J.A., Albornoz S.G., Pérez C.J., Villanueva M.E., Giorgieri S.A., and Copello G.J., Chitin Hydrogel Reinforced with TiO2 Nanoparticles as an Arsenic Sorbent, Chem. Eng. J., 285, 581-587, 2016.
  89. Dong S. and Wang Y., Characterization and Adsorption Properties of a Lanthanum-loaded Magnetic Cationic Hydrogel Composite for Fluoride Removal, Water Res., 88, 852-860, 2016.
  90. Sanyang M.L., Ghani W.A.W.A.K., Idris A., and Ahmad M.B., Hydrogel Biochar Composite for Arsenic Removal from Wastewater, Desalin. Water Treat., 57, 3674-3688, 2016.
  91. Zhou G., Luo J., Liu C., Chu L., Ma J., Tang Y., Zeng Z., and Luo S., A Highly Efficient Polyampholyte Hydrogel Sorbent Based Fixed-bed Process for Heavy Metal Removal in Actual Industrial Effluent, Water Res., 89, 151-160, 2016.
  92. Abdel-Halim E.S., Preparation of Starch/Poly (N,N-Diethylaminoethyl methacrylate) Hydrogel and Its Use in Dye Removal from Aqueous Solutions, React. Funct. Polym., 73, 1531-1536, 2013.
  93. Javadian H., Angaji M.T., and Naushad M., Synthesis and Characterization of Polyaniline/γ-Alumina Nanocomposite: A Comparative Study for the Adsorption of Three Different Anionic Dyes, J. Ind. Eng. Chem., 20, 3890-3900, 2014.
  94. Guin J.P., Bhardwaj Y.K., and Varshney L., Radiation Crosslinked Swellable Ionic Gels: Equilibrium and Kinetic Studies of Basic Ddye Adsorption, Desalin. Water Treat., 57, 4090-4099, 2016.
  95. Patel Y.N. and Patel M.P., Adsorption of Azo Dyes from Water by New Poly(3-acrylamidopropyl)-Trimethylammonium Chloride-co-N,N-dimethylacrylamide Superabsorbent Hydrogel-Equilibrium and Kinetic Studies, J. Environ. Chem. Eng., 1, 1368-1374, 2013.
  96. Li M., Wang Z., and Li B., Adsorption Behaviour of Congo Red by Cellulose/Chitosan Hydrogel Beads Regenerated from Ionic Liquid, Desalin. Water Treat., 57, 16970-16980, 2016.
  97. Nandi B.K., Goswami A., and Purkait M.K., Removal of Cationic Dyes from Aqueous Solutions by Kaolin: Kinetic and Equilibrium Studies, Appl. Clay Sci., 42, 583-590, 2009.
  98. Nilchi A., Rafiee R.,Babalou A.A., and Rasouli Garmarodi S., Adsorption Properties of Amidoxime Resins for Separation of Uranium (VI) from Aqueous Solutions, J. Nuclear Sci. Technol (Persian), 51, 42-47, 2010.
  99. Yagub M.T., Sen T.K., Afroze S., and Ang H.M., Dye and Its Removal from Aqueous Solution by Adsorption: A Review, Adv. Colloid Interface Sci., 209, 172-184, 2014.
  100. Taleb M.F.A., El-Mohdy H.L.A., and El-Rehim H.A.A., Radiation Preparation of PVA/CMC Copolymers and Their Application in Removal of Dyes, J. Hazard. Mater, 168, 68-75, 2009.
  101. Mezohegyi G., Van der Zee F.P., Font J., Fortuny A., and Fabregat A., Towards Advanced Aqueous Dye Removal Processes: A Short Review on the Versatile Role of Activated Carbon, J. Environ. Manage., 102, 148-164, 2012.
  102. Ajmal M., Siddiq M., Aktas N., and Sahiner N., Magnetic Co-Fe Bimetallic Nanoparticle Containing Modifiable Microgels for the Removal of Heavy Metal Ions, Organic Dyes and Herbicides from Aqueous Media, RSC Adv., 5, 43873-43884, 2015.
  103. Wu N. and Li Z., Synthesis and Characterization of Poly(HEA/MALA) Hydrogel and Its Application in Removal of Heavy Metal Ions from Water, Chem. Eng. J., 215, 894-902, 2013.
  104. Lo I.M.C., Yin K., and Tang S.C.N., Combining Material Characterization with Single and Multi-oxyanion Adsorption for Mechanistic Study of Chromate Removal by Cationic Hydrogel, J. Environ. Sci., 23, 1004-1010, 2011.
  105. Wołowicz A., and Hubicki Z., Effect of Matrix and Structure Types of Ion Exchangers on Palladium(II) Sorption from Acidic Medium, Chem. Eng. J., 160, 660-670, 2010.
  106. Ming Z.W., Long C.J., Cai P.B., Xing Z.Q., and Zhang B., Synergistic Adsorption of Phenol from Aqueous Solution onto Polymeric Adsorbents, J. Hazard. Mater., 128, 123-129, 2006.
  107. Ren P., Zhao X., Zhang J., Shi R., Yuan Z., and Wang C., Synthesis of High Selectivity Polymeric Adsorbent and Its Application on the Separation of Ginkgo Flavonol Glycosides and Terpene Lactones, React. Funct. Polym., 68, 899-909, 2008.
  108. Dragan E.S., Dinu M.V., Lisa G., and Trochimczuk A.W., Study on Metal Complexes of Chelating Resins Bearing Iminodiacetate Groups, Eur. Polym. J., 45, 2119-2130, 2009.
  109. Salvador F., Martin-Sanchez N., Sanchez-Hernandez R., Sanchez-Montero M.J., and Izquierdo C., Regeneration of Carbonaceous Adsorbents. Part I: Thermal Regeneration, Micropor. Mesopor. Mater. 202, 259-276, 2015.
  110. Gómez-Pastora J., Bringas E., and Ortiz I., Recent Progress and Future Challenges on the Use of High Performance Magnetic Nano-adsorbents in Environmental Applications, Chem. Eng. J., 256, 187-204, 2014.
  111. Ali I., New Generation Adsorbents for Water Treatment, Chem. Rev., 112, 5073-5091, 2012.
  112. Ambashta R.D. and Sillanpää M., Water Purification Using Magnetic Assistance: A Review, J. Hazard. Mater., 180, 38-49, 2010.
  113. Regula C., Carretier E., Wyart Y., Gésan-Guiziou G., Vincent A., Boudot D., and Moulin P., Chemical Cleaning/Disinfection and Ageing of Organic UF Membranes: A Review, Water Res., 56, 325-365, 2014.
  114. Khan M. and Lo I.M.C., Removal of Ionizable Aromatic Pollutants from Contaminated Water Using Nano γ-Fe2O3 Based Magnetic Cationic Hydrogel: Sorptive Performance, Magnetic Separation and Reusability, J. Hazard. Mater., 322, 195-204, 2017.
  115. Utech S. and Boccaccini A., A Review of Hydrogel-based Composites for Biomedical Applications: Enhancement of Hydrogel Properties by Addition of Rigid Inorganic Fillers, J. Mater. Sci. 51, 271-310, 2016.
  116. Hosseinzadeh H., Synthesis of Carrageenan/multi-walled Carbon Nanotube Hybrid Hydrogel Nanocomposite for Adsorption of Crystal Violet from Aqueous Solution, Pol. J. Chem. Technol., 17, 70-76, 2015.
  117. Hosseinzadeh H. and Khoshnood N., Removal of Cationic Dyes by Poly(AA-co-AMPS)/montmorillonite Nanocomposite Hydrogel, Desalin. Water Treat., 57, 6372-6383, 2016.
  118. Torabi Angaji M., Rafiee R., Hemmati M., Abdollahi M., and Razavi Aghjeh M.K., Parametric Studies on the Grafting of Poly(methyl methacrylate) onto Organophilic Montmorillonite Using Silylated Clay Platelets,  J. Macromol. Sci., 53, 957-974, 2014.
  119. Naficy S., Brown H.R., Razal J.M., Spinks G.M., and Whitten P.G., Progress Toward Robust Polymer Hydrogels, Aust. J. Chem., 64, 1007-1025, 2011.
  120. Balmér P., Phosphorus Recovery-An Overview of Potentials and Possibilities, Water Sci. Technol., 49, 185-190, 2004.
  121. Christie R., Environmental Aspects of Textile Dyeing, 1st ed. Woodhead, England, 2007.
  122. Jalilnejad E., Alizadeh M., and Fakhraddinfakhriazar S., Application of Biological Methods in Decolorization of Azo Dye Containing Wastewaters, J. Stud. Color World. (Persian), 8, 27-40, 2018.