ساخت و بررسی غشای کامپوزیتی فیلم نازک پلی‌آمینی بر پایه پلی‌(5،2-بنزیمیدازول) با پایداری شیمیایی زیاد

نوع مقاله : پژوهشی

نویسندگان

1 بابل، دانشگاه صنعتی نوشیروانی بابل، دانشکده مهندسی شیمی، کدپستی 4714871167

2 تهران، مؤسسه تحقیقات فناوری و علوم هسته‌ای، صندوق پستی 1339-14155

چکیده

فرضیه: با وجود کاربرد گسترده غشاهای نانوفیلترکردن در محلول‌های آبی، قابلیت استفاده آن‌ها در تصفیه حلال‌های آلی نیز جالب توجه است. با وجود این، هنوز چالش توسعه غشاهای نانوفیلترکردن پلیمری مقاوم در برابر حلال به منظور استفاده در محدوده گسترده‌ای از حلال‌های آلی وجود دارد. پلیمرهای بسیاری با مقاومت زیاد در برابر حلال‌ها وجود دارند که از این میان می‌توان به پلی‌ایمید (PI) و پلی‌بنزیمیدازول (PBI) اشاره کرد که برای ساخت لایه ‌نگه‌دارنده غشاهای مقاوم در برابر حلال استفاده می‌شوند. پلی(5،2-بنزیمیدازول) (ABPBI) نوعی پلیمر با ساختار شیمیایی مشابه یا حتی بهتر نسبت به پلی‌بنزیمیدازول است.
روش‌ها: ابتدا پلیمر پلی(5،2-بنزیمیدازول) با خلوص زیاد سنتز شد. در مرحله بعد، غشاهای ABPBI و پلی‌وینیلیدن فلوئورید (PVDF) سنتز شدند. غشاهای کامپوزیتی فیلم نازک (TFC) پلی‌آمینی با روش پلیمرشدن بین‌سطحی و از واکنش بین پلی‌اتیلن ایمین (PEI) و سیانوریک ‌کلرید به‌دست آمدند. در پایان، ساختار، خواص فیزیکی و شیمیایی، پایداری شیمیایی و عملکرد غشاهای پایه و کامپوزیتی فیلم نازک حاصل از پلیمر ABPBI با غشاهای حاصل از PVDF مقایسه شدند.
یافته‌ها: آزمون‌های پایداری شیمیایی شامل حل‌پذیری، مقدار ژل و درجه تورم حاکی از پایداری بسیار زیاد غشای ABPBI بوده است. درجه تورم در حلال‌های اتانول، متانول و نرمال هگزان برای غشای پایه ABPBI  به ترتیب 0.0132، 0.175 و 0.01 و برای PDVF  به ترتیب 0.9، 0.808 و 0.34 بوده است. شار عبوری آب از غشاهای پلی‌آمینی ABPBI-PA و PVDF-PA  به ترتیب برابر با 20 و 26kg/m2.h و مقدار پس‌زنی محلول آبی دارای 10ppm رنگ‌دانه بلور بنفش به ترتیب برابر 85 و %81 بود.

کلیدواژه‌ها


عنوان مقاله [English]

Fabrication and Investigation of Polyamine Thin Film Composite Membrane based on Poly(2,5-benzimidazole) with High Chemical Stability

نویسندگان [English]

  • Ali Bali Eslami 1
  • Majid Peyravi 1
  • Mohsen Jahanshahi 1
  • Hamzeh Hosseinpour 2
1 Department of Chemical Engineering, Babol Noshirvani University of Technology, P.O. Box: 47148-71167, Babol, Iran
2 Nuclear Science and Technology Research Institute (NSTRI), P.O. Box: 14155-1339, Tehran, Iran
چکیده [English]

Hypothesis: Despite the wide application of nanofiltration (NF) membranes in aqueous solutions, their potential usage in the treatment of organic solution has been considered. However, it is still a challenge to develop polymeric solvent resistant nanofiltration membranes (SRNF) that can be applied in a broad range of organic solvents. There are many polymers with high resistance to solvents such as polyimide (PI) and polybenzimidazole (PBI) which used for making ultrafiltration membrane for SRNF. Poly(2,5-benzimidazole) (ABPBI) is a sort of polymer with similar or even better chemical structure than PBI.
Methods: At first, a high-purity poly(2,5-benzimidazole) (ABPBI) polymer was synthesized. In the next step, ABPBI and polyvinylidene fluoride (PVDF) membranes were synthesized. TFC polyamine membranes were prepared by the interfacial polymerization (IP) of polyethylenimine and cyanuric chloride. Finally, the physical and chemical structure as well as chemical stability and membrane performance of UF and TFC membranes obtained by ABPBI polymer were evaluated and compared with those of PVDF membrane.
Findings: Chemical stability tests including solubility, gel content and swelling degree indicated much higher stability of ABPBI membrane. The swelling degree in ethanol, methanol and n-hexane for ABPBI and PVDF membranes were 0.0132, 0.175, 0.01 and 0.9, 0.808, 0.34, respectively. The water fluxes for ABPBI-PA and PVDF-PA membranes were 20 and 26 kg/m2.h and the rejection for 10 ppm aqueous solution of crystal violet (CV, 408 g/mol) was 85 and 81, respectively.

کلیدواژه‌ها [English]

  • thin film composite membrane
  • poly(2
  • 5-benzimidazole)
  • organic solvent nanofiltration
  • polyamine top-layer
  • chemical stability
  1. Marchetti P., Jimenez Solomon M.F., Szekely G., and Livingston A.G., Molecular Separation with Organic Solvent Nanofiltration: a Critical Review, Chem. Rev., 114, 10735-10806, 2014.
  2. Vandezande P., Gevers L.E., and Vankelecom I.F., Solvent Resistant Nanofiltration: Separating on a Molecular Level, Chem. Soc. Rev., 37, 365-405, 2008. 
  3. Cheng X.Q., Konstas K., Doherty C.M., Wood C.D., Mulet X., Xie Z., Ng D., Hill M.R., Shao L., and Lau C.H., Hyper-Cross-linked Additives that Impede Aging and Enhance Permeability in Thin Polyacetylene Films for Organic Solvent Nanofiltration, ACS Appl. Mater. Interfaces, 9, 14401-14408, 2017.
  4. Sairam M., Loh X.X., Li K., Bismarck A., Steinke J.H.G., and Livingston A.G., Nanoporous Asymmetric Polyaniline Films for Filtration of Organic Solvents, J. Membr. Sci., 330, 166-174, 2009.
  5. Kong H., Song J., and Jang J., One-step Fabrication of Magnetic γ-Fe2O3/Polyrhodanine Nanoparticles Using In Situ Chemical Oxidation Polymerization and Their Antibacterial Properties, Chem. Commun., 46, 6735-6737, 2010.
  6. Rahimpour A., Jahanshahi M., Peyravi M., and Khalili S., Interlaboratory Studies of Highly Permeable Thin Film Composite Polyamide Nanofiltration Membrane, Polym. Adv. Technol., 23, 884-893, 2012.
  7. Hermans S., Dom E., Mariën H., Koeckelberghs G., and Vankelecom I.F.J., Efficient Synthesis of Interfacially Polymerized Membranes for Solvent Resistant Nanofiltration, J. Membr. Sci., 476, 356-363, 2015.
  8. Peyravi M., Jahanshahi M., Rahimpour A., Javadi A., and Hajavi S., Novel Thin Film Nanocomposite Membranes Incorporated with Functionalized TiO2 Nanoparticles for Organic Solvent Nanofiltration, Chem. Eng. J., 241, 155-166, 2014.
  9. Xing D.Y., Chan S.Y., and Chung T.S., The Ionic Liquid [EMIM] OAc as a Solvent to Fabricate Stable Polybenzimidazole Membranes for Organic Solvent Nanofiltration, Green Chem., 16, 1383-1392, 2014.
  10. Xu, Y., You F., Sun H., and Shao L., Realizing Mussel-Inspired Polydopamine Selective Layer with Strong Solvent Resistance in Nanofiltration Toward Sustainable Reclamation, ACS Sustain Chem. Eng., 5, 5520-5528, 2017.
  11. Tham H.M., Wang K.Y., Hua D., Japip S., and Chung T.S., From Ultrafiltration to Nanofiltration: Hydrazine Cross-linked Polyacrylonitrile Hollow Fiber Membranes for Organic Solvent Nanofiltration, J. Membr. Sci., 542, 289-299, 2017.
  12. Vanherck K., Vandezande P., Aldea S.O., and Vankelecom I.F., Cross-linked Polyimide Membranes for Solvent Resistant Nanofiltration in Aprotic Solvents, J. Membr. Sci., 320, 468-476, 2008.
  13. Peyravi M., Rahimpour A., and Jahanshahi M., Thin Film Composite Membranes with Modified Polysulfone Supports for Organic Solvent Nanofiltration, J. Membr. Sci., 423, 225-237, 2012.
  14. Dutczak S., Cuperus F., Wessling M., and Stamatialis D., New Crosslinking Method of Polyamide-Imide Membranes for Potential Application in Harsh Polar Aprotic Solvents, Sep. Purif. Technol., 102, 142-146, 2013.
  15. Kosaraju P. and Sirkar K., Interfacially Polymerized Thin Film Composite Membranes on Microporous Polypropylene Supports for Solvent-Resistant Nanofiltration, J. Membr. Sci., 321, 155-161, 2008.
  16. Jansen J.C., Darvishmanesh S., Tasselli F., Bazzarelli F., Bernardo P., Tocci E., Friess K., Randova A., Drioli E., and Van der Bruggen B., Influence of the Blend Composition on the Properties and Separation Performance of Novel Solvent Resistant Polyphenylsulfone/Polyimide Nanofiltration Membranes, J. Membr. Sci., 447, 107-118, 2013.
  17. da Silva Burgal J., Peeva L.G., Kumbharkar S., and Livingston A., Organic Solvent Resistant Poly(ether-ether-ketone) Nanofiltration Membranes, J. Membr. Sci., 479, 105-116, 2015.
  18. Hua D. and Chung T.S., Polyelectrolyte Functionalized Lamellar Graphene Oxide Membranes on Polypropylene Support for Organic Solvent Nanofiltration, Carbon, 122, 604-613, 2017.
  19. Kharul U. and H. Lohokare, Porous ABPBI [Poly (2,5-benzimidazole)] Membrane and Process of Preparing the Same, US Pat, 8,715,783, 2014.
  20. Wang J.T.-W. and Hsu S.L.C., Enhanced High-Temperature Polymer Electrolyte Membrane for Fuel Cells Based on Polybenzimidazole and Ionic Liquids, Electrochim Acta, 56, 2842-2846, 2011.
  21. Asensio J.A., Borrós S., and Gómez-Romero P., Polymer Electrolyte Fuel Cells Based on Phosphoric Acid-Impregnated Poly(2,5-Benzimidazole) Membranes, J. Electrochem. Soc., 151, A304-A310, 2004.
  22. Kumbharkar S.C. and Kharul U.K., New N-substituted ABPBI: Synthesis and Evaluation of Gas Permeation Properties, J. Membr. Sci., 360, 418-425, 2010.
  23. Gherasim C.V., T. Luelf Roth H., and Wessling M., Dual-Charged Hollow Fiber Membranes for Low-Pressure Nanofiltration Based on Polyelectrolyte Complexes: One-Step Fabrication with Tailored Functionalities, ACS Appl. Mater. Interfaces, 8, 19145-19157, 2016.
  24. Sedaghat M., Yegani R., Jafarzadeh Y., and Tavakoli A., The Effect of LiCl and Coagulation Bath Temperature on the Structure and Performance of PVDF Membranes, Iran. J. Polym. Sci. Technol.(Persian), 28, 301-311, 2015.
  25. Chang X., Wang Z., Quan S., Xu Y., Jiang Z., and Shao L., Exploring the Synergetic Effects of Graphene Oxide (GO) and Polyvinylpyrrodione (PVP) on Poly(vinylylidenefluoride) (PVDF) Ultrafiltration Membrane Performance, Appl Surf Sci, 316, 537-548, 2014.
  26. Zhang X., Shen L., Lang W.Z., and Wang Y., Improved Performance of Thin-Film Composite Membrane with PVDF/PFSA Substrate for Forward Osmosis Process, J. Membr. Sci., 535, 188-199, 2017.
  27. Jafarzadeh Y., Mirzababaei M., Shahbazi M.J., Ghofrani B., Esmaeili E., Rezaei N., and Moradi M., Preparation, Characterization and Analysis of Fouling Mechanisms of TiO2-Embedded PVDF Membranes, Iran. J. Polym. Sci. Technol.(Persian), 29, 543-558, 2017.
  28. Lee K.P., Bargeman G., de Rooij R., Kemperman A.J., and Benes N.E., Interfacial Polymerization of Cyanuric Chloride and Monomeric Amines: pH Resistant Thin Film Composite Polyamine Nanofiltration Membranes, J. Membr. Sci., 523, 487-496, 2017.
  29. Peri J., Infrared Study of OH and NH2 Groups on the Surface of a Dry Silica Aerogel, J. Phys. Chem., 70, 2937-2945, 1966.
  30. Lee K.P., Zheng J., Bargeman G., Kemperman A.J.B., and Benes N.E., pH Stable Thin Film Composite Polyamine Nanofiltration Membranes by Interfacial Polymerisation, J. Membr. Sci., 478, 75-84, 2015.
  31. Lee K.P., Zheng J., Bargeman G., Kemperman A.J., and Benes N.E., pH Stable Thin Film Composite Polyamine Nanofiltration Membranes by Interfacial Polymerisation, J. Membr. Sci., 478, 75-84, 2015.
  32. Childress A.E. and Elimelech M., Effect of Solution Chemistry on the Surface Charge of Polymeric Reverse Osmosis and Nanofiltration Membranes, J. Membr. Sci., 119, 253-268, 1996.
  33. Valtcheva I.B., Kumbharkar S.C., Kim J.F., Bhole Y., and Livingston A.G., Beyond Polyimide: Crosslinked Polybenzimidazole Membranes for Organic Solvent Nanofiltration (OSN) in Harsh Environments, J. Membr. Sci., 457, 62-72, 2014.
  34. Chen D., Yu S., Yang M., Li D., and Li X., Solvent Resistant Nanofiltration Membranes Based on Crosslinked Polybenzimidazole, RSC Adv., 6, 16925-16932, 2016.
  35. Vanherck K., Cano-Odena A., Koeckelberghs G., Dedroog T., and Vankelecom I., A Simplified Diamine Crosslinking Method for PI Nanofiltration Membranes, J. Membr. Sci., 353, 135-143, 2010.