سنتز نانوالیاف کامپوزیتی بر پایه تیتانیم دی‌‌اکسید دوپه‌شده با نانوذرات مس اکسید با الکتروریسی و کاربرد آن‌ها در تخریب نورکاتالیزی پساب‌های دارویی

نوع مقاله : پژوهشی

نویسندگان

سنندج، دانشگاه کردستان، دانشکده مهندسی، گروه مهندسی شیمی، کدپستی 66177

چکیده

فرضیه: فرایند نورکاتالیزی به‌دلیل کانی‌زایی (معدنی‌شدن) کامل آلاینده‌ها و سازگاری با محیط زیست می‌تواند جایگزین مناسبی برای روش‌های متداول تصفیه پساب دارویی باشد. در این پژوهش، با توجه به ضعف‌های به‌کارگیری نانوذرات نورکاتالیزگر بر پایه TiO2 همچون انبوهش و مشکل جداسازی، نانوالیاف TiO2-CuO نورکاتالیزی با روش الکتروریسی سنتز و قابلیت نورکاتالیزی آن‌ها ارزیابی شد.
روش‌ها: کامپوزیت نانوساختار TiO2-CuO با بارگذاری نانوذرات CuO به روش پراکنش حالت جامد روی نانوالیاف بر پایه TiO2 الکتروریسی‌شده سنتز و با آزمون‌های پراش پرتو X، میکروسکوپی الکترون پویشی نشر میدانی (FE-SEM)، طیف‌نمایی‌های پراکنده‌کننده انرژی پرتو
X، بازتاب نفوذی (DRS)، BET و فوتولومینسانس (PL) شناسایی شد. با هدف ارزیابی قابلیت نورکاتالیزی نانوالیاف کامپوزیتی TiO2-CuO در تصفیه پساب‌های دارویی، نمونه سنتزی برای نورتخریب تتراسایکلین به‌عنوان پرمصرف‌ترین آنتی بیوتیک به‌کار گرفته شد.
یافته‌ها: نتایج آزمون‌های XRD ،FE-SEM و EDX سنتز نانوالیاف کامپوزیتی را تأیید کرد. الگوی XRD نشان داد، ساختار بلوری TiO2 تشکیل‌شده به‌طور عمده به‌شکل آناتاز است. عکس‌های FE-SEM پراکنش یکنواخت نانوذرات CuO را در نانوالیاف‌ نشان داد. نتایج آزمون‌های میکروسکوپی نوری نشانگر شکاف نوار کمتر نمونه سنتزی در مقایسه با نانوذرات و نانوالیاف بدون TiO2 و مقدار نسبتاً کم بازترکیب الکترون-حفره بود که هر دو از مشخصه‌های اصلی نورکاتالیزگر پربازده هستند. آزمون BET‌ سطح ویژه  8.5m2/g  و ساختار مزومتخلخل‌ نمونه سنتزی را نشان داد. در نهایت، فعالیت نورکاتالیزی نانوالیاف کامپوزیتی در نورتخریب تتراسایکلین در پساب با pH‌‌های متفاوت بررسی شد. نانوالیاف کامپوزیتی TiO2-CuO بازده تخریب %71 را در نورتخریب تتراسایکلین در pH خنثی نشان داد که مطابق با نتایج مشخصه نمونه سنتزی است. این مشاهدات و یافته‌ها همراه با عملکرد نورکاتالیزی نمونه سنتزی در مقایسه با پیشینه پژوهش، خواص و قابلیت نورکاتالیزگری نانوالیاف کامپوزیتی TiO2-CuO را در تصفیه پساب دارویی تأیید کرد.

کلیدواژه‌ها


عنوان مقاله [English]

Synthesis of TiO2 Composite Nanofibers Doped with Copper Oxide Nanoparticles through Electrospinning and Their Application in Photocatalytic Degradation of Pharmaceutical Wastewaters

نویسندگان [English]

  • Ayub Moradi
  • Farhad Rahmani
  • Mehrdad Khamforoush
Department of Chemical Engineering, Faculty of Engineering, University of Kurdistan, Postal Code 66177, Sanandaj, Iran
چکیده [English]

Hypothesis: The photocatalysis process can be an appropriate alternative for traditional methods of pharmaceutical wastewater treatment because of its complete mineralization of pollutants and an environmentally friendly method. In challenging the drawbacks of photocatalytic TiO2-based nanoparticles such as aggregation and separation, photocatalytic TiO2-CuO nanofibers were produced through electrospinning technique and their photocatalytic capability was evaluated.
Methods: A TiO2-CuO nanostructured composite was synthesized by loading CuO nanoparticles on the electrospun TiO2 nanofibers through solid state dispersion method and characterized by X-ray diffractometry (XRD), field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDS), BET (Brunauer-Emmett-Teller), differential reflectance spectroscopy (DRS) and photoluminescence (PL) analysis. By studying and exploring the photocatalysis of TiO2-CuO composite nanofibers in pharmaceutical wastewaters treatment, the synthesized sample was tested in the photodegradation of tetracycline as the most widely used antibiotics.
Findings: The XRD, FE-SEM and EDX results confirmed the synthesis of composite nanofibers. The XRD pattern showed the crystal structure of TiO2 was mainly in the form of anatase. FE-SEM images demonstrated the relatively uniform dispersion of CuO nanoparticles in nanofibers. The results of optical spectroscopy analysis revealed a lower band gap of the synthesized nanofibers compared to TiO2-free nanofibers and nanoparticles; and relatively low electron-hole recombination which are the main characteristics of an effective photocatalyst. The BET analysis depicted a specific surface area of 8.5 m2/g and a mesoporous structure of the synthesized product. Finally, the photocatalytic activity of composite nanofibers was investigated in the photodegradation of tetracycline at various pH levels of wastewater. The TiO2-CuO composite nanofibers exhibited tetracycline degradation efficiency of 71% at neutral pH which is in accordance with the obtained data on sample characterization. These observations and findings together with the comparison of the photocatalytic performance of the synthesized sample compared with literature review verify the photocatalytic characteristics and the capability of TiO2-CuO composite nanofiber in pharmaceutical wastewaters treatment.

کلیدواژه‌ها [English]

  • TiO2 nanofibers
  • copper oxide nanoparticles
  • electrospinning method
  • photocatalytic treatment
  • tetracycline
  1. Osotsi M.I., Macharia D.K., Zhu B., Wang Z., Shen X., Liu Z., Zhang L., and Chen Z., Synthesis   of ZnWO4−x Nanorods with Oxygen Vacancy for Efficient Photocatalytic Degradation of Tetracycline, Prog. Nat. Sci., 28, 408-415, 2018.
  2. Rozrokh K., Khamforoush M., and Moradi A., Optimization and Enhancement of PAN Ultrafiltration Membrane for Separation of Lignin from Wastewater of Paper Mill Using Response Surface Methodology, Iran. J. Polym. Sci. Technol. (Persian), 32, 254-239, 2019.
  3. Scheytt T.J., Mersmann P., and Heberer T., Mobility of Pharmaceuticals Carbamazepine, Diclofenac, Ibuprofen, and Propyphenazone in Miscible-displacement Experiments, J. Contam. Hydrol., 83, 53-69, 2006.
  4. Ternes T.A., Occurrence of Drugs in German Sewage Treatment Plants and Rivers, Water Res., 32, 3245-3260, 1998.
  5. Elmolla E.S. and Chaudhuri M., Comparison of Different Advanced Oxidation Processes for Treatment of Antibiotic Aqueous Solution, Desalination, 256, 43-47, 2010.
  6. Klavarioti M., Mantzavinos D., and Kassinos D., Removal of Residual Pharmaceuticals from Aqueous Systems by Advanced Oxidation Processes, Environ. Int., 35, 402-417, 2009.
  7. Kümmerer K., Antibiotics in the Aquatic Environment: A Review–Part I, Chemosphere, 75, 417-434, 2009.
  8. Ravelli D., Dondi D., Fagnoni M., and Albini A., Photocatalysis. A Multi-faceted Concept for Green Chemistry, Chem. Soc. Rev., 38, 1999-2011, 2009.
  9. Addamo M., Augugliaro V., Di Paola A., García-López E., Loddo V., Marci G., Molinari R., Palmisano L., and Schiavello M., Preparation, Characterization, and Photoactivity of Polycrystalline Nanostructured TiO2 Catalysts, J. Phys. Chem. B, 108, 3303-3310, 2004.
  10. Rahimi A., Bayati B., and Khamforoush M., Synthesis and Application of Cu-X Zeolite for Removal of Antibiotic from Aqueous Solution: Process Optimization Using Response Surface Methodology, Arab. J. Sci. Eng., 44, 5381-5397, 2019.
  11. Kupusovic T., Midzic S., Silajdzic I., and Bjelavac J., Cleaner Production Measures in Small-Scale Slaughterhouse Industry-Case Study in Bosnia and Herzegovina, J. Cleaner Prod., 15, 378-383, 2007.
  12. Mohajeri S., Aziz H.A., Isa M.H., Zahed M.A., and Adlan M.N., Statistical Optimization of Process Parameters for Landfill Leachate Treatment Using Electro-Fenton Technique, J. Hazard. Mater., 176, 749-758, 2010.
  13. Wang H., Zhang L., Chen Z., Hu J., Li S., Wang Z., Liu J., and Wang X., Semiconductor Heterojunction Photocatalysts: Design, Construction, and Photocatalytic Performances, Chem. Soc. Rev., 43, 5234-5244, 2014.
  14. Rauf M. and Ashraf S.S., Fundamental Principles and Application of Heterogeneous Photocatalytic Degradation of Dyes in Solution, Chem. Eng. J., 151, 10-18, 2009.
  15. Bahnemann D., Photocatalytic Water Treatment: Solar Energy Applications, Sol. Energy, 77, 445-459, 2004.
  16. Ni M., Leung M.K., Leung D.Y., and Sumathy K., A Review and Recent Developments in Photocatalytic Water-Splitting Using TiO2 for Hydrogen Production, Renew. Sustain. Energy Rev., 11, 401-425, 2007.
  17. Ahmad H., Kamarudin S., Minggu L., and Kassim M., Hydrogen from Photo-Catalytic Water Splitting Process: A Review, Renew. Sustain. Energy Rev., 43, 599-610, 2015.
  18. Khanmohammadi M., Shahrouzi J.R., and Rahmani F., Insights into Mesoporous MCM-41-Supported Titania Decorated with CuO Nanoparticles for Enhanced Photodegradation of Tetracycline Antibiotic, Environ. Sci. Pollut. Res., 1-18, 2020.
  19. Salimian S., Montazer M., Rashidi A.S., and Soleimani N., Thermal Regulating Nanofibers Composite from Polyethylene Glycol, Poly(vinyl alcohol) and Titanium Dioxide Nanoparticles, Iran. J. Polym. Sci. Technol. (Persian), 5, 385-396, 2019.
  20. Zhu L., Hong M., and Ho G.W., Fabrication of Wheat Grain Textured TiO2/CuO Composite Nanofibers for Enhanced Solar H2 Generation and Degradation Performance, Nano Energy, 11, 28-37, 2015.
  21. Jinhui J., Kuili L., Weiqiang F., Meng L., Yu L., Baodong M., Hongye B., Hongqiang S., Songliu Y., and Weidong S., Electrospinning Synthesis and Photocatalytic Property of Fe2O3/MgFe2O4 Heterostructure for Photocatalytic Degradation of Tetracycline, Mater. Lett., 176, 1-4, 2016.
  22. Li S., Hu S., Xu K., Jiang W., Liu Y., Leng Z., and Liu J., Construction of Fiber-Shaped Silver Oxide/Tantalum Nitride PN Heterojunctions as Highly Efficient Visible-Light-Driven Photocatalysts, J. Colloid Interface Sci., 504, 561-569, 2017.
  23. Li S., Hu S., Jiang W., Liu Y., Zhou Y., Liu Y., and Mo L., Hierarchical Architectures of Bismuth Molybdate Nanosheets onto Nickel Titanate Nanofibers: Facile Synthesis and Efficient Photocatalytic Removal of Tetracycline Hydrochloride, J. Colloid Interface Sci., 521, 42-49, 2018.
  24. Tauc J. and Menth A., States in the Gap, J. Non-Cryst. Solids, 8, 569-585, 1972.
  25. Abdollahi Y., Abdullah A., Zainal Z., and Yusof N., Synthesis and Characterization of Manganese Doped ZnO Nanoparticles, Int. J. Sci.: Basic Appl. Sci., 11, 62-69, 2011.
  26. Ruan X., Hu H., Che H., Che G., Li C., Liu C., and Dong H., Facile Fabrication of Ag2O/Bi12GeO20 Heterostructure with Enhanced Visible-Light Photocatalytic Activity for the Degradation of Various Antibiotics, J. Alloys Compd., 773, 1089-1098, 2019.
  27. Macaraig L., Chuangchote S., and Sagawa T., Electrospun SrTiO3 Nanofibers for Photocatalytic Hydrogen Generation, J. Mater. Res., 29, 123-130, 2014.
  28. Alibe I.M., Matori K.A., Yaakob Y., Rashid U., Alibe A.M., Zaid M.H.M., Nasir S., and Nasir M.M., Effects of Polyvinylpyrrolidone on Structural and Optical properties of Willemite Semiconductor Nanoparticles by Polymer Thermal Treatment Method, J. Therm. Anal. Calorim., 136, 2249-2268, 2019.
  29. Kamari H.M., Al-Hada N.M., Saion E., Shaari A.H., Talib Z.A., Flaifel M.H., and Ahmed A.A.A., Calcined Solution-based PVP Influence on ZnO Semiconductor Nanoparticle Properties, Crystals, 7, 2, 2017.
  30. Liu S., Liu B., Nakata K., Ochiai T., Murakami T., and Fujishima A., Electrospinning Preparation and Photocatalytic Activity of Porous TiO2 Nanofibers, J. Nanomater., 2012, 2012.
  31. Zhang L., Li Y., Zhang Q., and Wang H., Hierarchical Nanostructure of WO3 Nanorods on TiO2 Nanofibers and the Enhanced Visible Light Photocatalytic Activity for Degradation of Organic Pollutants, Cryst. Eng. Comm., 15, 5986-5993, 2013.
  32. Lee S.S., Bai H., Liu Z., and Sun D.D., Novel-structured Electrospun TiO2/CuO Composite Nanofibers for High Efficient Photocatalytic Cogeneration of Clean Water and Energy from Dye Wastewater, Water Res., 47, 4059-4073, 2013.
  33. Qin N., Liu Y., Wu W., Shen L., Chen X., Li Z., and Wu L., One-dimensional CdS/TiO2 Nanofiber Composites as Efficient Visible-light-Driven Photocatalysts for Selective Organic Transformation: Synthesis, Characterization, and Performance, Langmuir, 31, 1203-1209, 2015.
  34. Pavasupree S., Suzuki Y., Yoshikawa S., and Kawahata R., Synthesis of Titanate, TiO2 (B), and Anatase TiO2 Nanofibers from Natural Rutile Sand, J. Solid State Chem., 178, 3110-3116, 2005.
  35. Linsebigler A.L., Lu G., and Yates Jr J.T., Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results, Chem. Rev., 95, 735-758, 1995.
  36. Marin O., Grinblat G., Gennaro A.M., Tirado M., Koropecki R.R., and Comedi D., On the Origin of  White Photoluminescence from ZnO Nanocones/Porous Silicon Heterostructures at Room Temperature, Superlattices Microstruct., 79, 29-37, 2015.
  37. Hou H., Shang M., Gao F., Wang L., Liu Q., Zheng J., Yang Z., and Yang W., Highly Efficient Photocatalytic Hydrogen Evolution in Ternary Hybrid TiO2/CuO/Cu Thoroughly Mesoporous Nanofibers, ACS Appl. Mater. Interfaces, 8, 20128-20137, 2016.
  38. Tiwari A., Shukla A., Tiwari D., and Lee S.-M., Au-Nanoparticle/Nanopillars TiO2 Meso-porous Thin Films in the Degradation of Tetracycline Using UV-A Light, J. Ind. Eng. Chem., 69, 141-152, 2019.
  39. Khodadoost S., Hadi A., Karimi-Sabet J., Mehdipourghazi M., and Golzary A., Optimization of Hydrothermal Synthesis of Bismuth Titanate Nanoparticles and Application for Photocatalytic Degradation of Tetracycline, J. Environ. Chem. Eng., 5, 5369-5380, 2017.
  40. Ahmadi M., Motlagh H.R., Jaafarzadeh N., Mostoufi A., Saeedi R., Barzegar G., and Jorfi S., Enhanced Photocatalytic Degradation of Tetracycline and Real Pharmaceutical Wastewater Using MWCNT/TiO2 Nanocomposite, J. Environ. Manage., 186, 55-63, 2017.
  41. Reyes C., Fernandez J., Freer J., Mondaca M., Zaror C., Malato S., and Mansilla H., Degradation and Inactivation of Tetracycline by TiO2 Photocatalysis, J. Photochem. Photobiol., A, 184, 141-146, 2006.
  42. Tiwari A., Shukla A., Tiwari D., and Lee S.M., Nanocomposite Thin Films Ag0(NP)/TiO2 in the Efficient Removal of Micro-pollutants from Aqueous Solutions: A Case Study of Tetracycline and Sulfamethoxazole Removal, J. Environ. Manage., 220, 96-108, 2018.
  43. Lalhriatpuia C., Tiwari D., Tiwari A., and Lee S.M., Immobilized Nanopillars-TiO2 in the Efficient Removal of Micro-pollutants from Aqueous Solutions: Physico-Chemical Studies, Chem. Eng. J., 281, 782-792, 2015.
  44. Wang H., Wu X., Zhao H., and Quan X., Enhanced Photocatalytic Degradation of Tetracycline Hydrochloride by Molecular Imprinted Film Modified TiO2 Nanotubes, Chin. Sci. Bull., 57, 601-605, 2012.
  45. Wang X., Jia J., and Wang Y., Combination of Photocatalysis with Hydrodynamic Cavitation for Degradation of Tetracycline, Chem. Eng. J., 315, 274-282, 2017.
  46. He L., Dong Y., Zheng Y., Jia Q., Shan S., and Zhang Y., A Novel Magnetic MIL-101(Fe)/TiO2 Composite for Photo Degradation of Tetracycline under Solar Light, J. Hazard. Mater., 361, 85-94, 2019.