آمیخته پلی‌(لاکتیک اسید)-اتیلن-co-وینیل استات بسیارچقرمه با افزودن هم‌زمان نانوذرات آب‌گریز و سازگارکننده

نوع مقاله : پژوهشی

نویسندگان

قم، دانشگاه صنعتی قم، دانشکده فنی مهندسی، گروه مهندسی پلیمر، صندوق پستی 1519-37195

چکیده

فرضیه: در سال‌های اخیر، با توجه به موضوع‌های آلودگی زیست‌محیطی، صنایع پلاستیک به مصرف پلاستیک‌های زیست تخریب‌پذیر تشویق شده‌اند. پلی‌(لاکتیک اسید)، PLA، از شناخته‌شده‌ترین پلیمرهای زیست‌تخریب پذیر با برتری ماهیت زیست‌پایه است. عیب اصلی PLA شکنندگی ذاتی آن بوده که آمیخته‌سازی مناسب‌ترین روش برای غلبه بر آن است.
روش‌ها: PLA بسیار چقرمه از کوپلیمر اتیلن-وینیل استات (EVA)، در مجاورت نانوذرات آب‌گریز سیلیکا و سازگارکننده کوپلیمر قطعه‌ای (استیرن-اتیلن-بوتیلن-استیرن) دارای مالئیک انیدرید (SEBS-g-MA) با آمیخته‌سازی مذاب تهیه شد. شکل‌شناسی، خواص گرمایی، خواص مکانیکی و رئولوژی نمونه‌ها بررسی شد.
یافته‌ها: عکس‌های میکروسکوپی الکترون عبوری (TEM) تأیید کرد، نانوذرات سیلیکا به‌طور عمده در قطره‌های EVA و سطح مشترک EVA و PLA و نیز مقداری در ماتریس PLA قرار گرفته‌اند. همچنین، با واردکردن نانوذرات، اندازه متوسط قطره‌های EVA کاهش یافت و استحکام
در سطح مشترک بهبود یافت. با وجود سازگارکننده شکل‌شناسی به‌طور چشمگیری تغییر یافت و فاز پراکنده کروی EVA به‌شکل رشته‌ای درآمد. با افزودن نانوذرات و نیز سازگارکننده مقدار بلورینگی PLA در آمیخته‌ها کاهش یافت. با افزودن phr 5 نانوذرات سیلیکا ازدیاد طول تا پارگی، چقرمگی و استحکام ضربه‌ای به‌طور شایان توجهی افزایش یافت. افزودن هم‌زمان نانوذرات و سازگارکننده به‌طور چشمگیری باعث بهبود خواص مکانیکی شد. به‌عنوان مثال، ازدیاد طول تا پارگی و استحکام ضربه‌ای آمیخته سازگارشده PLA/EVA دارای phr 5 نانوسیلیکا از %7 و 5.1kJ/m2  به‌ترتیب به %141 و 71kJ/m2 (در مقایسه با آمیخته خالص) افزایش یافت. ریزساختار آمیخته‌ها با نتایج رئولوژی خطی ارزیابی شد.

کلیدواژه‌ها


عنوان مقاله [English]

A Highly Toughened Poly(lactic acid)/Ethylene-co-Vinyl Acetate Blend with the Simultaneous Addition of Hydrophobic Nanoparticles and Compatibilizer

نویسندگان [English]

  • Zahra Sadat Hoseini
  • Jafar Khademzadeh Yeganeh
  • Salar Moradi
Department of Polymer Engineering, Faculty of Engineering, Qom University of Technology, P.O. Box: 37195-1519, Qom, Iran
چکیده [English]

Hypothesis: In recent years, due to environmental pollution and sustainability issues, plastic industries have been encouraged to use biodegradable polymers. Poly(lactic acid) (PLA) is one of the most well-known biodegradable polymers with the advantage of bio-based nature. However, the inherent brittleness of PLA is its main disadvantage. The blending technique is the most effective and practical method to overcome the brittleness of PLA.
Methods: A highly toughened PLA was prepared through physical melt-blending with ethylene-vinyl acetate (EVA) in the presence of hydrophobic nanosilica and SEBS-g-MA block copolymer compatibilizer. The morphology, thermal properties, mechanical properties, and linear rheology of the samples were investigated.
Findings: Transmission electron microscopy (TEM) images revealed that nanosilica is predominantly localized in the EVA droplets and at the interface of PLA and EVA. Some were also resided in the PLA matrix. Upon incorporating of nanoparticles, the interfacial strength improved and that the average droplet size was decreased. In the presence of compatibilizer, the morphology considerably changed: the dispersed spherical EVA phase turned into the cylindrical shape. Addition of copolymer and nanoparticles decreased the crystallization of PLA in the blends. Addition of 5 phr nanosilica considerably enhanced tensile toughness, elongation-at-break, and impact strength. On the other hand, the simultaneous addition of nanoparticles and compatibilizer dramatically improved the mechanical properties. For example, the elongation-at-break and impact strength of the compatibilized PLA/EVA blend
containing 5 phr nanosilica were increased from 7% and 5.1 kJ/m2 to 141% and 71 kJ/m2 (compared to a neat blend), respectively. Finally, the microstructure of the blends was assessed through rheological measurements.

کلیدواژه‌ها [English]

  • poly(lactic acid)
  • ethylene-co-vinyl acetate
  • toughening
  • SEBS-g-MA compatibilizer
  • hydrophobic nanosilica
  1. Degradable Polymers, Recycling and Plastics Waste Management, Albertsson A.C. and Huang S.J. (Eds.), Marcell Dekker, 1995.
  2. Al-Delaimy W., Ramanathan V., and Sánchez Sorondo M., Health of People, Health of Planet and Our Responsibility: Climate Change, Springer Nature, 419, 2020.
  3. Kabir E., Kaur R., Lee J., Kim K.H., and Kwon E.E., Prospects of Biopolymer Technology as an Alternative Option for Non-degradable Plastics and Sustainable Management of Plastic Wastes, J. Clean. Prod., 258, 120536, 2020.
  4. Hamad K., Kaseem M., Ayyoob M., Joo J., and Deri F., Polylactic Acid Blends: The Future of Green, Light and Tough, Prog. Polym. Sci., 85, 83-127, 2018.
  5. Zhao X., Hu H., Wang X., Yu X., Zhou W., and Peng S., Super Tough Poly(lactic acid) Blends: A Comprehensive Review, RSC Adv., 10, 13316-13368, 2020.
  6. Bai H., Huang C., Xiu H., Gao Y., Zhang Q., and Fu Q., Toughening of Poly(L-lactide) with Poly(ε-caprolactone): Combined Effects of Matrix Crystallization and Impact Modifier Particle Size, Polymer, 54, 5257-5266, 2013.
  7. Babu R.P., O’connor K., and Seeram R., Current Progress on Bio-Based Polymers and Their Future Trends, Prog. Biomater., 2, 8, 2013.
  8. Jin C., Leng X., Zhang M., Wang Y., Wei Z., and Li Y., Fully Biobased Biodegradable Poly(l-lactide)-b-Poly(ethylene brassylate)-b-Poly(L-lactide) Triblock Copolymers: Synthesis and Investigation of Relationship Between Crystallization Morphology and Thermal Properties, Polym. Int., 69, 363-372, 2020.
  9. Carbonell-Verdu A., Samper M.D., Garcia-Garcia D., Sanchez-Nacher L., and Balart R., Plasticization Effect of Epoxidized Cottonseed Oil (ECSO) on Poly(lactic acid), Ind. Crops Prod., 104, 278-286, 2017.
  10. Chen Y., Yuan D., and Xu C., Dynamically Vulcanized Biobased Polylactide/Natural Rubber Blend Material with Continuous Cross-Linked Rubber Phase, ACS Appl. Mater. Interfaces, 6, 3811-3816, 2014.
  11. Shi Y.Y., Zhang W.B., Yang J.H., Huang T., Zhang N., Wang Y., Yuan G.P., Zhang C.L. Super Toughening of the Poly(L-lactide)/Thermoplastic Polyurethane Blends by Carbon Nanotubes, RSC Adv., 3, 26271-26282, 2013.
  12. Ma P., Hristova-Bogaerds D.G., Goossens J.G., Spoelstra A.B., Zhang Y., and Lemstra P.J., Toughening of Poly(lactic acid) by Ethylene-co-Vinyl Acetate Copolymer with Different Vinyl Acetate Contents, Eur. Polym. J., 48, 146-154, 2012.
  13. Shahnooshi M., Javadi A., Nazockdast H., and Altstädt V., Development of In Situ Nanofibrillar Poly(lactic acid)/Poly(butylene terephthalate) Composites: Non-isothermal Crystallization and Crystal Morphology, Eur. Polym. J., 125, 109489, 2020.
  14. Li Y. and Shimizu H., Improvement in Toughness of Poly(l-lactide) (PLLA) through Reactive Blending with Acrylonitrile–Butadiene–Styrene Copolymer (ABS): Morphology and Properties, Eur. Polym. J., 45, 738-746, 2009.
  15. Zeng J.B., Li K.A., and Du A.K., Compatibilization Strategies in Poly(lactic acid)-Based Blends, RSC Adv., 5, 32546-32565, 2015.
  16. Shin B.Y., Compatibilization of Immiscible Poly(lactic acid)/Poly(ε-caprolactone) Blend through Electron-Beam Irradiation with the Addition of a Compatibilizing Agent, Radiat. Phys. Chem., 83, 98-104, 2013.
  17. Polymer Blends Handbook, Utracki L.A. and Wilkie C.A. (Eds.), Dordrecht, Kluwer Academic, 2002.
  18. Henderson A.M., Ethylene-Vinyl Acetate (EVA) Copolymers: A General Review, IEEE Electr. Insul. Mag., 9, 30-38, 1993.
  19. Ma P., Xu P., Zhai Y., Dong W., Zhang Y., and Chen M., Biobased Poly(lactide)/Ethylene-co-vinyl Acetate Thermoplastic Vulcanizates: Morphology Evolution, Superior Properties, and Partial Degradability, ACS Sustain. Chem. Eng., 3, 2211-2219, 2015.
  20. Zhang N. and Lu X., Morphology and Properties of Super-Toughened Bio-Based Poly(lactic acid)/Poly(ethylene-co-vinyl acetate) Blends by Peroxide-Induced Dynamic Vulcanization and Interfacial Compatibilization, Polym. Test., 56, 354-363, 2016.
  21. Moradi S. and Yeganeh J.K., Highly Toughened Poly(lactic acid)(PLA) Prepared through Melt Blending with Ethylene-co-Vinyl Acetate (EVA) Copolymer and Simultaneous Addition of Hydrophilic Silica Nanoparticles and Block Copolymer Compatibilizer, Polym. Test., 91, 106735, 2020.
  22. Wang X.F., Zhang Z.X., Yang J.H., Wang Y., and Zhang J.H., Largely Improved Fracture Toughness of an Immiscible Poly(L-lactide)/Ethylene-co-Vinyl Acetate Blend Achieved by Adding Carbon Nanotubes, RSC Adv., 5, 69522-69533, 2015.
  23. Xiu H., Huang C., Bai H., Jiang J., Chen F., Deng H., Wang K., Zhang Q., and Fu Q., Improving Impact Toughness of Polylactide/Poly(ether) Urethane Blends via Designing the Phase Morphology Assisted by Hydrophilic Silica Nanoparticles, Polymer, 55, 1593-1600, 2014.
  24. Shi Y.Y., Zhang W.B., Yang J.H., Huang T., Zhang N., Wang Y., Yuan G.P., Zhang C.L., Super Toughening of the Poly(L-lactide)/Thermoplastic Polyurethane Blends by Carbon Nanotubes, RSC Adv., 3, 26271-26282, 2013.
  25. Yeganeh J.K., Goharpey F., Moghimi E., Petekidis G., and Foudazi R., Controlling the Kinetics of Viscoelastic Phase Separation Through Self-Assembly of Spherical Nanoparticles or Block Copolymers, Soft Matter, 10, 9270-9280, 2014.
  26. Yeganeh J.K., Goharpey F., Moghimi E., Petekidis G., and Foudazi R., Manipulating the Kinetics and Mechanism of Phase Separation in Dynamically Asymmetric LCST Blends by Nanoparticles, Phys. Chem. Chem. Phys., 17, 27446-27461, 2015.
  27. Owens D.K. and Wendt R.C., Estimation of the Surface Free Energy of Polymers, J. Appl. Polym. Sci., 13, 1741-1747, 1969.
  28. Wu D., Lin D., Zhang J., Zhou W., Zhang M., Zhang Y., Wang D., and Lin B., Selective Localization of Nanofillers: Effect on Morphology and Crystallization of PLA/PCL Blends, Macromol. Chem. Phys., 212, 613-626, 2011.
  29. Behradfar A., Shojaei A., and Sheikh N., Rheological and Mechanical Characteristics of Low Density Polyethylene/Ethylene-Vinyl Acetate/Organoclay Nanocomposites, Polym. Eng. Sci., 50, 1315-1325, 2010.
  30. Yeganeh J.K., Dynamics of Nucleation and Growth Mechanism in the Presence of Nanoparticles or Block Copolymers: Polystyrene/Poly(vinyl methyl ether), Polym. Bull., 75, 1-5, 2018.
  31. Ignaczak W., Sui X., Kellersztein I., Wagner H.D., and El Fray M., The Effect of Fibre Sizing and Compatibilizer of Polypropylene/Poly(butylene terephthalate) Blends on the Mechanical and Interphase Properties of Basalt Fibre Reinforced Composites, Polym. Int. 67, 414-21, 2018.
  32. Sharma R. and Maiti S.N., Melt Rheological Properties of PBT/SEBS and Reactively Compatibilized PBT/SEBS/SEBS-g-MA Polymer Blends, J. Appl. Polym. Sci., 132, 41402, 2015.
  33. Shi Y.Y., Yang J.H., Huang T., Zhang N., Chen C., and Wang Y., Selective Localization of Carbon Nanotubes at the Interface of Poly(L-lactide)/Ethylene-co-Vinyl Acetate Resulting in Lowered Electrical Resistivity, Compos. B. Eng., 55, 463-469, 2013.
  34. Han C.D., Rheology and Processing of Polymeric Materials: Polymer Rheology, Oxford University, New York, 280, 2007.
  35. Nofar M., Maani A., Sojoudi H., Heuzey M.C., and Carreau P.J., Interfacial and Rheological Properties of PLA/PBAT and PLA/PBSA Blends and Their Morphological Stability under Shear Flow, J. Rheol., 59, 317-333, 2015.
  36. Han C.D., Rheology and Processing of Polymeric Materials: Polymer Processing, Oxford University, New York, 137, 2007.
  37. Dong W., He M., Wang H., Ren F., Zhang J., Zhao X., and Li Y., PLLA/ABS Blends Compatibilized by Reactive Comb Polymers: Double Tg Depression and Significantly Improved Toughness, ACS Sustain. Chem. Eng., 3, 2542-2550, 2015.
  38. Elias L., Fenouillot F., Majesté J.C., and Cassagnau P., Morphology and Rheology of Immiscible Polymer Blends Filled with Silica Nanoparticles, Polymer, 48, 6029-6040, 2007.
  39. Fenouillot F., Cassagnau P., and Majesté J.C., Uneven Distribution of Nanoparticles in Immiscible Fluids: Morphology Development in Polymer Blends, Polymer, 50, 1333-1350, 2009.
  40. Aghjeh M.R., Nazari M., Khonakdar H.A., Jafari S.H., Wagenknecht U., and Heinrich G., In Depth Analysis of Micro-Mechanism of Mechanical Property Alternations in PLA/EVA/Clay Nanocomposites: A Combined Theoretical and Experimental Approach, Mater. Des., 88,1277-1289, 2015.
  41. Micro- and Nanostructured Multiphase Polymer Blend Systems: Phase Morphology and Interfaces, Harrats C., Thomas S., and Groeninckx G. (Eds.), CRC, 2005.
  42. Karkhaneh-Yousefi F., Goharpey F., and Foudazi R., Interfacial Activity of Reactive Compatibilizers in Polymer Blends, Rheol. Acta, 56, 851-862, 2017.
  43. Pötschke P. and Paul D.R., Formation of Co-continuous Structures in Melt-Mixed Immiscible Polymer Blends, J. Macromol. Sci. A, 43, 87-141. 2003.
  44. Koning C., Van Duin M., Pagnoulle C., and Jerome R., Strategies for Compatibilization of Polymer Blends, Prog. Polym. Sci., 23, 707-757, 1998.
  45. Said H.M., Effects of Gamma Irradiation on The Crystallization, Thermal and Mechanical Properties of Poly(L-lactic acid)/Ethylene-co-vinyl acetate Blends, J. Radiat. Res. Appl. Sci., 6, 11-20, 2013.
  46. As’habi L., Jafari S.H., Khonakdar H.A., Häussler L., Wagenknecht U., and Heinrich G., Non-isothermal Crystallization Behavior of PLA/LLDPE/Nanoclay Hybrid: Synergistic Role of LLDPE and Clay, Thermochim. Acta, 565, 102-113, 2013.
  47. Aghjeh M.R., Asadi V., Mehdijabbar P., Khonakdar H.A., and Jafari S.H., Application of Linear Rheology in Determination of Nanoclay Localization in PLA/EVA/Clay Nanocomposites: Correlation with Microstructure and Thermal Properties, Compos. B. Eng., 86, 273-284, 2016.
  48. Kulinski B. and Piorkowska E., Crystallization, Structure and Properties of Plasticized Poly(L-lactide), Polymer, 46, 10290-10300, 2005.
  49. Nehra R., Maiti S.N., and Jacob J., Analytical Interpretations of Static and Dynamic Mechanical Properties of Thermoplastic Elastomer Toughened PLA Blends, J. Appl. Polym. Sci., 135, 45644, 2018.
  50. Zhao C., Qin H., Gong F., Feng M., Zhang S., and Yang M., Mechanical, Thermal and Flammability Properties of Polyethylene/Clay Nanocomposites, Polym. Degrad. Stab., 87, 183-189, 2005.
  51. Manchado M.L., Valentini L., Biagiotti J., and Kenny J.M., Thermal and Mechanical Properties of Single-Walled Carbon Nanotubes–Polypropylene Composites Prepared by Melt Processing, Carbon, 43, 1499-1505, 2005.
  52. Liu G.C., He Y.S., Zeng J.B., Li Q.T., and Wang Y.Z., Fully Biobased and Supertough Polylactide-Based Thermoplastic Vulcanizates Fabricated by Peroxide-Induced Dynamic Vulcanization and Interfacial Compatibilization, Biomacromolecules, 15, 4260-4271, 2014.
  53. Yeganeh J.K., Goharpey F., and Foudazi R., Rheology and Morphology of Dynamically Asymmetric LCST Blends: Polystyrene/Poly(vinyl methyl ether), Macromolecules, 43, 8670-8685, 2010.
  54. Zhang Q. and Archer L.A. Poly(ethylene oxide)/Silica Nanocomposites: Structure and Rheology, Langmuir, 18, 10435-10442, 2002.
  55. Sanjari Shahrezaei M.A., Goharpey F., and Foudazi R., Effect of Particle–Particle and Polymer–Particle Interactions on Nanosilica Aggregation in Polystyrene, Polym. Compos., 39, 2904-2914, 2018.
  56. Du F., Scogna R.C., Zhou W., Brand S., Fischer J.E., and Winey K.I., Nanotube Networks in Polymer Nanocomposites: Rheology and Electrical Conductivity, Macromolecules, 37, 9048-9055, 2004.
  57. Yeganeh J.K., Goharpey F., and Foudazi R., Can Only Rheology be Used to Determine the Phase Separation Mechanism in Dynamically Asymmetric Polymer Blends (PS/PVME), RSC Adv., 2, 8116-8127, 2012.