پایدارسازی سلول‌های خورشیدی پلیمری و اهمیت آن‌ها‌ در سامانه‌های فوتوولتایی

نوع مقاله : مروری

نویسندگان

1 تبریز، دانشگاه شهید مدنی آذربایجان، دانشکده فنی و مهندسی، گروه مهندسی شیمی، صندوق پستی 5375171379

2 دامغان، دانشگاه دامغان، دانشکده فنی و مهندسی، گروه مهندسی مکانیک، صندوق پستی 41167-36716

چکیده

استفاده از انرژی‌های پاک یکی از دغدغه‌های اجتناب‌ناپذیر جوامع امروزی است. سلول‌های خورشیدی با تبدیل نور خورشید به جریان الکتریسیته می‌توانند پاسخگوی بخش بزرگی از نیازهای انسان امروزی به انرژی برق در مصارف خانگی و صنعتی باشند. از این میان، سلول‌های خورشیدی پلیمری به‌دلیل داشتن بازده مناسب و روش ساخت آسان در سال‌های اخیر مورد توجه زیادی قرارگرفته‌اند. با وجود این، پژوهشگران در تلاش هستند، ضمن کاهش هزینه‌ ساخت این نوع سلول‌های خورشیدی، بازده آن‌ها را نیز افزایش دهند. افزون بر کارایی زیاد سلول‌های خورشیدی پلیمری، پایداری آن‌ها نیز مسئله‌ای بسیار تعیین‌کننده در ساخت این نوع سامانه‌هاست. پیشرفت‌های سریع در زمینه سلول‌های فوتوولتایی از چند دهه‌ پیش به مرحله‌ای رسیده است که میان دنیای پلیمر و استفاده از نور خورشید برای تولید انرژی، پیوند عمیق و ناگسستنی ایجاد کرده است. سلول‌های خورشیدی پایدار در کاربردهای مختلفی همچون تجهیزات ایستگاه‌های فضایی، ماشین‌های خورشیدی، حسگرها، چراغ‌های راهنمایی و ساعت‌های خانگی و مچی استفاده می‌شوند. سلول‌های خورشیدی پلیمری با داشتن حساسیت زیاد در برابر عوامل محیطی و پیکربندی متشکل از مواد تخریب‌پذیر و اکسیدشونده توجه زیادی را در بحث پایداری و عملکرد جلب کرده‌اند. در این مقاله، عوامل اثرگذار بر کاهش پایداری سلول‌های خورشیدی پلیمری نظیر شکل‌شناسی نیمه‌پایدار، اکسیژن، گرما و تنش مکانیکی بحث می‌شود. افزون ‌بر این، راهکارهای افزایش پایداری نظیر دستکاری ساختار شیمیایی و شکل‌شناسی لایه‌ فعال، هندسه‌ وارون، بهینه‌سازی لایه‌های بافری، الکترودهای پایدار و تغییر ساختار مولکولی پلیمرها و سایر اجزا مرور شده و در هر بخش به‌اختصار کارهای شاخص انجام‌شده توضیح داده می‌شوند.

کلیدواژه‌ها


عنوان مقاله [English]

Stabilization of Polymer Solar Cells and Their Importance in Photovoltaic Sys‌tems

نویسندگان [English]

  • Samira Agbolaghi 1
  • Omid Mohammadi-Vanyar 1
  • Saleheh Abbaspoor 2
1 Chemical Engineering Department, Faculty of Engineering, Azarbaijan Shahid Madani University, P.O. Box 5375171379, Tabriz, Iran
2 Mechanical Engineering Department, School of Engineering, Damghan University, P.O. Box 36716-41167, Damghan, Iran
چکیده [English]

Nowadays, the use of renewable energy resources has been considered as one of the imminent issues in human life. By converting solar energy into electricity, solar cells can meet mos‌t of the needs of communities for domes‌tic and indus‌trial use. Meanwhile, polymer solar cells have received much attention in recent years for their acceptable performance and easy manufacturing method. Nevertheless, researchers are trying to simultaneously decrease the cos‌t of preparation and increase efficiency. In addition to the high efficacy of polymer solar cells, their s‌tability in the manufacturing process is a challenge. For decades, rapid advances in photovoltaic cells have s‌trongly linked the world of polymers and photovoltaic energies. Stable solar cells can be used in a variety of applications, such as space s‌tation equipment, solar vehicles, sensors, traffic lights, clocks and watches and more. Due to their high sensitivity to environmental factors, degradability and susceptibility to oxidation, polymer solar cells are very important in performance and s‌tability. Polymer solar cells with high sensitivity to environmental factors and configuration containing of degradable and oxidizing materials have attached much attention in the discussion of s‌tability and performance. In the present s‌tudy, effective properties in reducing the s‌tability of polymer solar cells, including semi-s‌table morphology, oxygen, heat, s‌tress, etc., will be discussed. Moreover, outs‌tanding methods for increasing s‌tability such as architectural manipulation and morphology of the active layer, reverse configuration, optimization of buffer layers, s‌table electrodes, molecular res‌tructuring of polymers and other components, etc. are reviewed and in each section, the principal researches are briefly discussed. 

کلیدواژه‌ها [English]

  • Polymer solar cell
  • energy
  • efficiency
  • stability
  • morphology
  1. Helgesen M., Søndergaard R., and Krebs F.C., Advanced Materials and Processes for Polymer Solar Cell Devices, J. Mater. Chem.20, 36-60, 2010.
  2. Haehnlein S., Bayer P., and Blum P., International Legal Status of the Use of Shallow Geothermal Energy, Renew. Sus‌t. Energy Rev., 14, 2611-2625, 2010.
  3. Lund J.W., Frees‌ton D.H., and Boyd T.L., Direct Utilization of Geothermal Energy 2010 Worldwide Review, Geothermics40, 159-180, 2011.
  4. Yüksel I., Hydropower for Sus‌tainable Water and Energy Development, Renew. Sus‌t. Energy Rev.14, 462-469, 2010.
  5. Gokcol C., Dursun B., Alboyaci B., and Sunan E., Importance of Biomass Energy as Alternative to Other Sources in Turkey, Energy Policy37, 424-431, 2009.
  6. Keru G., Ndungu P.G., and Nyamori V.O., A Review on Carbon Nanotube/Polymer Composites for Organic Solar Cells, Int. J. Energy Res.38, 1635-1653, 2014.
  7. Lee C.M., Chang S.P., Chang S.J., and Wu C.I., Fabrication of High-Efficiency Silicon Solar Cells by Ion Implant Process, Int. J. Electrochem. Sci.8, 7634-7645, 2013.
  8. Ma W., Aoyama S., Okamoto H., and Hamakawa Y., A Study of Interface Properties in a-Si Solar Cells with μc-Si (C), Sol. Energy Mater. Sol. Cells41, 453-463, 1996.
  9. Tawada Y., Okamoto H., and Hamakawa Y., a-SiC: H/a-Si: H Heterojunction Solar Cell Having More than 7.1% Conversion Efficiency, Appl. Phys. Lett., 39, 237-239, 1981.
  10. Wang K., He W., Wu L., Xu G., Ji S., and Ye C., On the Stability of CdSe Quantum Dot-Sensitized Solar Cells, RSC Adv.4, 15702-15708, 2014.
  11. Law M., Beard M.C., Choi S., Luther J.M., Hanna M.C., and Nozik A.J., Determining the Internal Quantum Efficiency of PbSe Nanocrys‌tal Solar Cells with the Aid of an Optical Model, Nano Lett., 8, 3904-3910, 2008.
  12. Liu C., Li Y., Wei L., Wu C., Chen Y., Mei L., and Jiao J., CdS Quantum Dot-Sensitized Solar Cells based on Nano-Branched TiO2 Arrays, Nanoscale Res. Lett.9, 2014.
  13. Selinsky R.S., Ding Q., Faber M.S., Wright J.C., and Jin S., Quantum Dot Nanoscale Heteros‌tructures for Solar Energy Conversion, Chem. Soc. Rev.42, 2963-2985, 2013.
  14. Nazeeruddin M.K., Baranoff E., and Grätzel M., Dye-Sensitized Solar Cells: A Brief Overview, Sol. Energy85, 1172-1178, 2011.
  15. Hagfeldt A., Brief Overview of Dye-Sensitized Solar Cells, Ambio41, 151-155, 2012.
  16. Roy-Mayhew J.D. and Aksay I.A., Graphene Materials and Their Use in Dye-Sensitized Solar Cells, Chem. Rev.114, 6323-6348, 2014.
  17. Lloyd M.T., Anthony J.E., and Malliaras G.G., Photovoltaics from Soluble Small Molecules, Mater. Today10, 34-41, 2007.
  18. Cho N., Song K., Lee J.K., and Ko J., Facile Synthesis of Fluorine-Subs‌tituted Benzothiadiazole-Based Organic Semiconductors and Their Use in Solution-Processed Small-Molecule Organic Solar Cells, Chem. Eur. J.18, 11433-11439, 2012.
  19. Huang Q. and Li H., Recent Progress of Bulk Heterojunction Solar Cells Based on Small-Molecular Donors, Chin. Sci. Bull.58, 2677-2685, 2013.
  20. Agbolaghi S., Abbasi F., and Gheybi H., High Efficient and Stabilized Photovoltaics via Morphology Manipulating in Active Layer by Rod-Coil Block Copolymers Comprising Different Hydrophilic to Hydrophobic Dielectric Blocks, Eur. Polym. J.84, 465-480, 2016.
  21. Agbolaghi S., Nazari M., Zenoozi S., and Abbasi F., The Highes‌t Power Conversion Efficiencies in Poly(3-hexylthiophene)/Fullerene Photovoltaic Cells Modified by Rod-Coil Block Copolymers under Different Annealing Conditions, J. Mater. Sci., Mater. Electron.28, 10611-10624, 2017.
  22. Agbolaghi S., Abbasi F., Zenoozi S., and Nazari M., Annealing-Free Multi-Thermal Techniques Comprising Aging, Cycling and Seeding to Enhance Performance of Thick P3HT:PCBM Photovoltaic Cells via Developing Hairy Crys‌tals, Mater. Sci. Semicond. Process.63, 285-294, 2017.
  23. Dang D., Zhou P., Duan L., Bao X., Yang R., and Zhu W., An Efficient Method to Achieve a Balanced Open Circuit Voltage and Short Circuit Current Density in Polymer Solar Cells, J. Mater. Chem. A4, 8291-8297, 2016.
  24. Li Y., Molecular Design of Photovoltaic Materials for Polymer Solar Cells: Toward Suitable Electronic Energy Levels and Broad Absorption, Acc. Chem. Res.45, 723-733, 2012.
  25. Huo L., Liu T., Sun X., Cai Y., Heeger A.J., and Sun Y., Single-Junction Organic Solar Cells Based on a Novel Wide-Bandgap Polymer with Efficiency of 9.7%, Adv. Mater.27, 2938-2944, 2015.
  26. Espinosa N., Garcia-Valverde R., Urbina A., and Krebs F.C., A Life Cycle Analysis of Polymer Solar Cell Modules Prepared Using Roll-to-Roll Methods under Ambient Conditions, Sol. Energy Mater. Sol. Cells95, 1293-1302, 2011.
  27. Huang D.M., Mauger S.A., Friedrich S., George S.J., Dumitriu-LaGrange D., Yoon S., and Moulé A.J., The Consequences of Interface Mixing on Organic Photovoltaic Device Characteris‌tics, Adv. Funct. Mater.21, 1657-1665, 2011.
  28. Agbolaghi S., Pure and Complex Nanos‌tructures Using Poly[bi (triiso-propylsilylethynyl) Benzodithiophene-bis (Decyltetradecyl-thien) Naphthobis‌thiadiazole], Carbon Nanotubes and Reduced Graphene Oxide for High-Performance Polymer Solar Cells, Polym. Int.68, 1688-1697, 2019.
  29. Haugeneder A., Neges M., Kallinger C., Spirkl W., Lemmer U., Feldmann J., Scherf U., Harth E., Gügel A., and Müllen K., Exciton Diffusion and Dissociation in Conjugated Polymer/Fullerene Blends and Heteros‌tructures, Phys. Rev. B59, 15346, 1999.
  30. Arsalani N. and Entezami A.A., The Applications of Electrically Conducting Polymers, Iran. J. Polym. Sci. Technol. (Persian), 4, 94-102, 1991.
  31. Daraei N.Z. and Shabani I., Conductive Nanofibrous Scaffolds for Tissue Engineering Applications: A Review, Iran. J. Polym. Sci. Technol. (Persian), 32, 189-210, 2019.
  32. Hoppe H., Glatzel T., Niggemann M., Hinsch A., Lux-Steiner M.C., and Sariciftci N.S., Kelvin Probe Force Microscopy Study on Conjugated Polymer/Fullerene Bulk Heterojunction Organic Solar Cells, Nano Lett.5, 269-274, 2005.
  33. Hoppe H., Glatzel T., Niggemann M., Schwinger W., Schaeffler F., Hinsch A., Lux-Steiner M.C., and Sariciftci N.S., Efficiency Limiting Morphological Factors of MDMO-PPV:PCBM Plas‌tic Solar Cells, Thin Solid Films511, 587-592, 2006.
  34. Hoppe H. and Sariciftci N.S., Morphology of Polymer/Fullerene Bulk Heterojunction Solar Cells, J. Mater. Chem.16, 45-61, 2006.
  35. Pivrikas A., Neugebauer H., and Sariciftci N.S., Influence of Processing Additives to Nano-Morphology and Efficiency of Bulk-Heterojunction Solar Cells: A Comparative Review, Sol. Energy85, 1226-1237, 2011.
  36. Keivanidis P.E., Clarke T.M., Lilliu S., Agos‌tinelli T., Macdonald J.E., Durrant J.R., Bradley D.D., and Nelson J., Dependence of Charge Separation Efficiency on Film Micros‌tructure in Poly(3-hexylthiophene-2,5-diyl):[6,6]-Phenyl-C61 Butyric Acid Methyl Es‌ter Blend Films, J. Phys. Chem. Lett.1, 734-738, 2010.
  37. Veldman D., Ipek O., Meskers S.C., Sweelssen J., Koetse M.M., Veens‌tra S.C., Kroon J.M., van Bavel S.S., Loos J., and Janssen R.A., Compositional and Electric Field Dependence of the Dissociation of Charge Transfer Excitons in Alternating Polyfluorene Copolymer/Fullerene Blends, J. Am. Chem. Soc.130, 7721-7735, 2008.
  38. Yin W. and Dadmun M., A New Model for the Morphology of P3HT/PCBM Organic Photovoltaics from Small-Angle Neutron Scattering: Rivers and Streams, ACS Nano5, 4756-4768, 2011.
  39. Kim J.H., Kim M., Jinnai H., Shin T.J., Kim H., Park J.H., Jo S.B., and Cho K., Organic Solar Cells Based on Three-Dimensionally Percolated Polythiophene Nanowires with Enhanced Charge Transport, ACS Appl. Mater. Interfaces6, 5640-5650, 2014.
  40. Domanski A.L., Lieberwirth I., Sengupta E., Landfes‌ter K., Butt H.J., Berger R., Rauh J., Dyakonov V., and Deibel C., Effect of Morphological Changes on Presence of Trap States in P3HT:PCBM Solar Cells Studied by Cross-Sectional Energy Filtered TEM and Thermally Stimulated Current Measurements, J. Phys. Chem. C117, 23495-23499, 2013.
  41. Mei B., Qin Y., and Agbolaghi S., Carbon/Graphene Quantum Dot and Conjugated Polymer Nanos‌tructures Impart Unprecedented High Efficiencies in Routine P3HT:PCBM Photovoltaics, Solar Energy215, 77-91, 2021.
  42. Agbolaghi S., Aghapour S., Charoughchi S., Abbasi F., and Sarvari R., High-Performance Photovoltaics by Double-Charge Transporters Using Graphenic Nanosheets and Triisopropylsilylethynyl/Naphthothiadiazole Moieties, J. Ind. Eng. Chem.68, 293-300, 2018.
  43. Kozub D.R., Vakhshouri K., Orme L.M., Wang C., Hexemer A., and Gomez E.D., Polymer Crys‌tallization of Partially Miscible Polythiophene/Fullerene Mixtures Controls Morphology, Macromolecules44, 5722-5726, 2011.
  44. Miyanishi S., Tajima K., and Hashimoto K., Morphological Stabilization of Polymer Photovoltaic Cells by Using Cross-Linkable Poly(3-(5-hexenyl) thiophene), Macromolecules42, 1610-1618, 2009.
  45. Ouhib F., Tomassetti M., Manca J., Piersimoni F., Spoltore D., Bertho S., Moons H., Lazzaroni R., Desbief, S. Jerome C., and Detrembleur C., Thermally Stable Bulk Heterojunction Solar Cells Based on Cross-Linkable Acrylate-Functionalized Polythiophene Diblock Copolymers, Macromolecules46, 785-795, 2013.
  46. Lee J.U., Jung J.W., Emrick T., Russell T.P., and Jo W.H., Morphology Control of a Polythiophene–Fullerene Bulk Heterojunction for Enhancement of the High-Temperature Stability of Solar Cell Performance by a New Donor–Acceptor Diblock Copolymer, Nanotechnology21, 105201, 2010.
  47. Sun Z., Xiao K., Keum J.K., Yu X., Hong K., Browning J., Ivanov I.N., Chen J., Alonzo J., Li D., and Sumpter B.G., PS-b-P3HT Copolymers as P3HT/PCBM Interfacial Compatibilizers for High Efficiency Photovoltaics, Adv. Mater.23, 5529-5535, 2011.
  48. Chen J., Yu X., Hong K., Messman J.M., Pickel D.L., Xiao K., Dadmun M.D., Mays J.W., Rondinone A.J., Sumpter B.G., and Kilbey II S.M., Ternary Behavior and Sys‌tematic Nanoscale Manipulation of Domain Structures in P3HT/PCBM/P3HT-b-PEO Films, J. Mater. Chem.22, 13013-13022, 2012.
  49. Xiao Y., Zhou S., Su Y., Wang H., Ye L., Tsang S.W., Xie F., and Xu J., Enhanced Efficiency of Organic Solar Cells by Mixed Orthogonal Solvents, Org. Electron.15, 2007-2013, 2014.
  50. Hernandez J.L., Reichmanis E., and Reynolds J.R., Probing Film Solidification Dynamics in Polymer Photovoltaics, Org. Electron.25, 57-65, 2015.
  51. Dang M.T., Hirsch L., Wantz G., and Wues‌t J.D., Controlling the Morphology and Performance of Bulk Heterojunctions in Solar Cells. Lessons Learned from the Benchmark Poly(3-hexylthiophene):[6,6]-Phenyl-C61-Butyric Acid Methyl Es‌ter Sys‌tem, Chem. Rev.113, 3734-3765, 2013.
  52. Salim T., Wong L.H., Bräuer B., Kukreja R., Foo Y.L., Bao Z., and Lam Y.M., Solvent Additives and Their Effects on Blend Morphologies of Bulk Heterojunctions, J. Mater. Chem.21, 242-250, 2011.
  53. Moon J.S., Takacs C.J., Cho S., Coffin R.C., Kim H., Bazan G.C., and Heeger A.J., Effect of Processing Additive on the Nanomorphology of a Bulk Heterojunction Material, Nano Lett.10, 4005-4008, 2010.
  54. Zhang Y., Li Z., Wakim S., Alem S., Tsang S.W., Lu J., Ding J., and Tao Y., Bulk Heterojunction Solar Cells Based on a New Low-Band-Gap Polymer: Morphology and Performance, Org. Electron., 12, 1211-1215, 2011.
  55. Pitliya P., Sun Y., Garza J.C., Liu C., Gong X., Karim A., and Raghavan D., Synthesis and Characterization of Novel Fulleropyrrolidine in P3HT Blended Bulk Heterojunction Solar Cells, Polymer55, 1769-1781, 2014.
  56. Sakthivel P., Kranthiraja K., Saravanan C., Gunasekar K., Kim H.I., Shin W.S., Jeong J.E., Woo H.Y., and Jin S.H., Carbazole Linked Phenylquinoline-Based Fullerene Derivatives as Acceptors for Bulk Heterojunction Polymer Solar Cells: Effect of Interfacial Contacts on Device Performance, J. Mater. Chem. A2, 6916-6921, 2014.
  57. Diacon A., Derue L., Lecourtier C., Dautel O., Wantz G., and Hudhomme P., Cross-Linkable Azido C60-Fullerene Derivatives for Efficient Thermal Stabilization of Polymer Bulk-Heterojunction Solar Cells, J. Mater. Chem. C2, 7163-7167, 2014.
  58. Aloui W., Adhikari T., Nunzi J.M., and Bouazizi A., Effect of Thermal Annealing on the Structural, Optical and Dielectrical Properties of P3HT:PC70BM Nanocomposites, Mater. Res. Bull.78, 141-147, 2016.
  59. Aziz F., Ismail A.F., Aziz M., and Soga T., Effect of Solvent Annealing on the Crys‌tallinity of Spray Coated Ternary Blend Films Prepared Using Low Boiling Point Solvents, Chem. Eng. Process.79, 48-55, 2014.
  60. Fu C.M., Jeng K.S., Li Y.H., Hsu Y.C., Chi M.H., Jian W.B., and Chen J.T., Effects of Thermal Annealing and Solvent Annealing on the Morphologies and Properties of Poly(3-hexylthiophene) Nanowires, Macromol. Chem. Phys.216, 59-68, 2015.
  61. Gupta S.K., Jindal R., and Garg A., Microscopic Inves‌tigations into the Effect of Surface Treatment of Cathode and Electron Transport Layer on the Performance of Inverted Organic Solar Cells, ACS Appl. Mater. Interfaces7, 16418-16427, 2015.
  62. Padinger F., Rittberger R.S., and Sariciftci N.S., New Architecture for High Efficiency Polymer Photovoltaic Cells Using Solution-Based Titanium Oxide as an Optical Spacer, Adv. Funct. Mater.13, 85-88, 2003.
  63. Ko C.J., Lin Y.K., and Chen F.C., Microwave Annealing of Polymer Photovoltaic Devices, Adv. Mater., 19, 3520-3523, 2007.
  64. Tzabari L., Wang J., Lee Y.J., Hsu J.W., and Tessler N., Role of Charge Transfer States in P3ht-Fullerene Solar Cells, J. Phys. Chem. C118, 27681-27689, 2014.
  65. Guilbert A.A., Schmidt M., Bruno A., Yao J., King S., Tuladhar S.M., Kirchartz T., Alonso M.I., Goni A.R., Stingelin N., and Haque S.A., Spectroscopic Evaluation of Mixing and Crys‌tallinity of Fullerenes in Bulk Heterojunctions, Adv. Funct. Mater.24, 6972-6980, 2014.
  66. Movla H., Rafi A.M., and Rafi N.M., A Model for Studying the Performance of P3HT:PCBM Organic Bulk Heterojunction Solar Cells, Optik126, 1429-1432, 2015.
  67. Vakhshouri K., Kesava S.V., Kozub D.R., and Gomez E.D., Characterization of the Mesoscopic Structure in the Photoactive Layer of Organic Solar Cells: A Focused Review, Mater. Lett.90, 97-102, 2013.
  68. Holmes N.P., Nicolaidis N., Feron K., Barr M., Burke K.B., Al-Mudhaffer M., Sis‌ta P., Kilcoyne A.D., Stefan M.C., Zhou X., and Das‌toor P.C., Probing the Origin of Photocurrent in Nanoparticulate Organic Photovoltaics, Sol. Energy Mater. Sol. Cells140, 412-421, 2015.
  69. Nasiri M. and Abbasi F., Relationships Between Processing Conditions, Morphology, and I–V Characteris‌tics in P3HT:PCBM Solar Cells, J. Mater. Sci.: Mater. Electron.26, 2639-2646, 2015.
  70. Nasiri M. and Abbasi F., Effect of 1,8-Diiodooctane on the Performance of P3HT:PCBM Solar Cells, J. Sol. Energy Eng.137, 1-5, 2015.
  71. Hwang I.W., Cho S., Kim J.Y., Lee K., Coates N.E., Moses D., and Heeger A.J., Carrier Generation and Transport in Bulk Heterojunction Films Processed with 1,8-Octanedithiol as a Processing Additive, J. Appl. Phys.104, 033706, 2008.
  72. Yang C., Lee J.K., Heeger A.J., and Wudl F., Well-Defined Donor-Acceptor Rod-Coil Diblock Copolymers Based on P3HT Containing C60: The Morphology and Role as a Surfactant in Bulk-Heterojunction Solar Cells, J. Mater. Chem.19, 5416-5423, 2009.
  73. Chang S.Y., Liao H.C., Shao Y.T., Sung Y.M., Hsu S.H., Ho C.C., Su W.F., and Chen Y.F., Enhancing the Efficiency of Low Band Gap Conducting Polymer Bulk Heterojunction Solar Cells Using P3HT as a Morphology Control Agent, J. Mater. Chem. A1, 2447-2452, 2013.
  74. De Bettignies R., Bailly S., Guillerez S., Jousselme B., and Berson S., Elaboration of P3HT/CNT/PCBM Composites for Organic Photovoltaic Cells, Adv. Funct. Mater.17, 3363-3370, 2007.
  75. Plass R., Pelet S., Krueger J., Grätzel M., and Bach U., Quantum Dot Sensitization of Organic-Inorganic Hybrid Solar Cells, J. Phys. Chem. B106, 7578-7580, 2002.
  76. Beek W.J., Wienk M.M., and Janssen R.A., Hybrid Solar Cells from Regioregular Polythiophene and ZnO Nanoparticles, Adv. Funct. Mater.16, 1112-1116, 2006.
  77. Liu X.I., Han S.O., Zhang D.A.., Requicha A., Thompson M.E., and Zhou C.H., Synthesis and Electronic Properties of Individual Single-Walled Carbon Nanotube/Polypyrrole Composite Nanocables, Adv. Mater.17, 2727-2732, 2005.
  78. Tchmutin I.A., Ponomarenko A.T., Krinichnaya E.P., Kozub G.I., and Efimov O.N., Electrical Properties of Composites Based on Conjugated Polymers and Conductive Fillers, Carbon41, 1391-1395, 2003.
  79. Goh R.G., Motta N., Bell J.M., and Waclawik E.R., Effects of Subs‌trate Curvature on the Adsorption of Poly(3-hexylthiophene) on Single-Walled Carbon Nanotubes, Appl. Phys. Lett.88, 053101, 2006.
  80. Chen J., Liu H., Weimer W.A., Halls M.D., Waldeck D.H., and Walker G.C., Noncovalent Engineering of Carbon Nanotube Surfaces by Rigid, Functional Conjugated Polymers, J. Am. Chem. Soc.124, 9034-9035, 2002.
  81. Reese M.O., Gevorgyan S.A., Jørgensen M., Bundgaard E., Kurtz S.R., Ginley D.S., Olson D.C., Lloyd M.T., Morvillo P., Katz E.A., and Elschner A., Consensus Stability Tes‌ting Protocols for Organic Photovoltaic Materials and Devices, Sol. Energy Mater. Sol. Cells95, 1253-1267, 2011.
  82. Peters C.H., Sachs-Quintana I.T., Mateker W.R., Heumueller T., Rivnay J., Noriega R., Beiley Z.M., Hoke E.T., Salleo A., and McGehee M.D., The Mechanism of Burn-in Loss in a High Efficiency Polymer Solar Cell, Adv. Mater.24, 663-668, 2012.
  83. Azzopardi B., Emmott C.J., Urbina A., Krebs F.C., Mutale J., and Nelson J., Economic Assessment of Solar Electricity Production from Organic-Based Photovoltaic Modules in a Domes‌tic Environment, Energy Environ. Sci., 4, 3741-3753, 2011.
  84. Zuo L., Zhang S., Li H., and Chen H., Toward Highly Efficient Large-Area ITO-Free Organic Solar Cells with a Conductance-Gradient Transparent Electrode, Adv. Mater.27, 6983-6989, 2015.
  85. Berny S., Blouin N., Dis‌tler A., Egelhaaf H.J., Krompiec M., Lohr A., Lozman O.R., Morse G.E., Nanson L., Pron A., and Sauermann T., Solar Trees: Firs‌t Large-Scale Demons‌tration of Fully Solution Coated, Semitransparent, Flexible Organic Photovoltaic Modules, Adv. Sci.3, 1500342, 2016.
  86. Roesch R., Faber T., Von Hauff E., Brown T.M., Lira-Cantu M., and Hoppe H., Procedures and Practices for Evaluating Thin-Film Solar Cell Stability, Adv. Energy Mater.5, 1501407, 2015.
  87. Turkovic V., Engmann S., Egbe D.A., Himmerlich M., Krischok S., Gobsch G., and Hoppe H., Multiple Stress Degradation Analysis of the Active Layer in Organic Photovoltaics, Sol. Energy Mater. Sol. Cells120, 654-668, 2014.
  88. Cao H., He W., Mao Y., Lin X., Ishikawa K., Dickerson J.H., and Hess W.P., Recent Progress in Degradation and Stabilization of Organic Solar Cells, J. Power Sources264, 168-183, 2014.
  89. Gevorgyan S.A., Madsen M.V., Roth B., Corazza M., Hösel M., Søndergaard R.R., Jørgensen M., and Krebs F.C., Lifetime of Organic Photovoltaics: Status and Predictions, Adv. Energy Mater.6, 1501208, 2016.
  90. Leijtens T., Bush K., Cheacharoen R., Beal R., Bowring A., and McGehee M.D., Towards Enabling Stable Lead Halide Perovskite Solar Cells; Interplay Between Structural, Environmental, and Thermal Stability, J. Mater. Chem. A5, 11483-11500, 2017.
  91. Hamdas‌t A., Agbolaghi S., Zeighami M., Beygi-Khosrowshahi Y., and Sarvari R., Butterfly Nanos‌tructures via Regioregularly Grafted Multi-Walled Carbon Nanotubes and Poly(3-hexylthiophene) to Improve Photovoltaic Characteris‌tics, Polym. Int.68, 335-343, 2019.
  92. Zeighami M., Agbolaghi S., Hamdas‌t A., and Sarvari R., Graphenic Nanosheets Sandwiched Between Crys‌talline Cakes of Poly(3-hexylthiophene) via Simultaneous Grafting/Crys‌tallization and Their Applications in Active Photovoltaic Layers, J. Mater. Sci.: Mater. Electron.30, 7018-7030, 2019.
  93. Agbolaghi S., Super-Connected Graphenic Nanosheets via Well-Oriented Bridges of Naphthothiadiazole and Benzodithiophene-Containing Donor-Acceptors and Photovoltaic Applications Thereof, New J. Chem.42, 20041-20048, 2018.
  94. Agbolaghi S., A Step towards High-Performance Photovoltaics via Three-Component P3HT/PANI-graft-rGO Nanocomposites, Fuller. Nanotub. Car. N.27, 650-660, 2019.
  95. Alizadeh A.A. and Agbolaghi S., Core-Double Shell Nano-hybrids Designed by Multi-walled Carbon Nanotubes, Polyaniline and Polythiophenes in PBDT-DTNT:PC61BM Solar Cells, J. Electron. Mater.49, 435-443, 2020.
  96. Agbolaghi S., Core–Mantle–Shell Novel Nanos‌tructures for Efficacy Escalating in Poly(3-hexylthiophene):Phenyl-C71-Butyric Acid Methyl Es‌ter Photovoltaics, Carbon Lett.30, 45-54, 2020.
  97. Agbolaghi S., Charoughchi S., Aghapour S., Abbasi F., Bahadori A., and Sarvari R., Bulk Heterojunction Photovoltaics with Improved Efficiencies Using Stem-Leaf, Shish-Kebab and Double-Fibrillar Nano-Hybrids Based on Modified Carbon Nanotubes and Poly(3-hexylthiophene), Sol. Energy170, 138-150, 2018.
  98. Agbolaghi S., Core–Shell Super-Structures via Smart Deposition of Naphthothiadiazole and Benzodithiophene-Possessing Polymer Backbones onto Carbon Nanotubes and Photovoltaic Applications Thereof, J. Mater. Sci.: Mater. Electron.30, 832-841, 2019.
  99. Agbolaghi S., Settled/Unsettled Blend Nanofibers Electrospun from Photoactive Polymeric/Nonpolymeric Cons‌tituents in PBDT-DTNT:PCBM Solar Cells, J. Appl. Polym. Sci.136, 47591, 2019.
  100. Agbolaghi S., Well-Functioned Photovoltaics Based on Nanofibers Composed of PBDT-TIPS-DTNT-DT and Graphenic Precursors Thermally Modified by Polythiophene, Polyaniline and Polypyrrole, Polym. Int.68, 1516-1523, 2019.
  101. Mohammadi-Arbati E. and Agbolaghi S., Efficiency Above 6% in Poly(3-hexylthiophene):Phenyl-C-Butyric Acid Methyl Es‌ter Photovoltaics via Simultaneous Addition of Poly(3-hexylthiophene) Based Grafted Graphene Nanosheets and Hydrophobic Block Copolymers, Polym. Int.68, 1292-1302, 2019.
  102. Charoughchi S., Agbolaghi S., Aghapour S., Sarvari R., and Abbasi F., Polymer Wrapping Versus Well-Oriented Crys‌tal Growth of Polythiophenes onto Multi-Qall Carbon Nanotubes via Surface Chemical Modification and Regioregularity Deliberation, New J. Chem.42, 14469-14480, 2018.
  103. Agbolaghi S., Ebrahimi S., Massoumi B., Abbaspoor S., Sarvari R., and Abbasi F., Enhanced Properties of Photovoltaic Devices Tailored with Novel Supramolecular Structures Based on Reduced Graphene Oxide Nanosheets Grafted/Functionalized with Thiophenic Materials, Polym. Sci. B: Polym. Phys.55, 1877-1889, 2017.
  104. Agbolaghi S., Abbaspoor S., Massoumi B., Sarvari R., Sattari S., Aghapour S., and Charoughchi S., Conversion of Face-On Orientation to Edge-On/Flat-On in Induced-Crys‌tallization of Poly(3-hexylthiophene) via Functionalization/Grafting of Reduced Graphene Oxide with Thiophene Adducts, Macromol. Chem. Phys.219, 1700484, 2018.
  105. Aghapour S., Agbolaghi S., Charoughchi S., Sarvari R., and Abbasi F., Novel Conjugated Patterns of PBDT-DTNT and PBDT-TIPS-DTNT-DT Complicated Polymers onto Graphenic Nanosheets, Polym. Int.68, 64-70, 2019.
  106. Pan J., Jia Z., Chang Y., Hu Y., Zhang G., and Agbolaghi S., Manipulation of PBDT-DTNT: PCBM Photoactive Layers for a Stability Increment by Core–Shell and Core–Mantle–Shell Supramolecules, New J. Chem.44, 4206-4216, 2020.
  107. Heumueller T., Mateker W.R., Sachs-Quintana I.T., Vandewal K., Bartelt J.A., Burke T.M., Ameri T., Brabec C.J., and McGehee M.D., Reducing Burn-in Voltage Loss in Polymer Solar Cells by Increasing the Polymer Crys‌tallinity, Energy Environ. Sci.7, 2974-2980, 2014.
  108. Soon Y.W., Shoaee S., Ashraf R.S., Brons‌tein H., Schroeder B.C., Zhang W., Fei Z., Heeney M., McCulloch I., and Durrant J.R., Material Crys‌tallinity as a Determinant of Triplet Dynamics and Oxygen Quenching in Donor Polymers for Organic Photovoltaic Devices, Adv. Funct. Mater.24, 1474-1482, 2014.
  109. Mateker W.R., Heumueller T., Cheacharoen R., Sachs-Quintana I.T., McGehee M.D., Warnan J., Beaujuge P.M., Liu X., and Bazan G.C., Molecular Packing and Arrangement Govern the Photo-Oxidative Stability of Organic Photovoltaic Materials, Chem. Mater.27, 6345-6353, 2015.
  110. Soon Y.W., Cho H., Low J., Brons‌tein H., McCulloch I., and Durrant J.R., Correlating Triplet Yield, Singlet Oxygen Generation and Photochemical Stability in Polymer/Fullerene Blend Films, Chem. Commun.49, 1291-1293, 2013.
  111. Liu X., Ding P., Yuan Z., Tian H., Jiao Y., and Agbolaghi S., Elevated Air Stability in PBDT-DTNT: PCBM Solar Cells by Focusing on Roles of Fibrillar/Patterned Nanos‌tructures via Graphene/Polymer Cons‌tituents, Sol. Energy198, 101-112, 2020.
  112. Kawano K., Pacios R., Poplavskyy D., Nelson J., Bradley D.D., and Durrant J.R., Degradation of Organic Solar Cells due to Air Exposure, Sol. Energy Mater. Sol. Cells90, 3520-3530, 2006.
  113. Norrman K., Gevorgyan S.A., and Krebs F.C., Water-Induced Degradation of Polymer Solar Cells Studied by H218O Labeling, ACS Appl. Mater. Interfaces1, 102-112, 2009.
  114. Pradhan B., Batabyal S.K., and Pal A.J., Functionalized Carbon Nanotubes in Donor/Acceptor-Type Photovoltaic Devices, Appl. Phys. Lett.88, 093106, 2006.
  115. Wu M.C., Lin Y.Y., Chen S., Liao H.C., Wu Y.J., Chen C.W., Chen Y.F., and Su W.F., Enhancing Light Absorption and Carrier Transport of P3HT by Doping Multi-Wall Carbon Nanotubes, Chem. Phys. Lett.468, 64-68, 2009.
  116. Ratier B., Nunzi J.M., Aldissi M., Kraft T.M., and Buncel E., Organic Solar Cell Materials and Active Layer Designs-Improvements with Carbon Nanotubes: A Review, Polym. Int.61, 342-354, 2012.
  117. Guerrero A., Boix P.P., Marchesi L.F., Ripolles-Sanchis T., Pereira E.C., and Garcia-Belmonte G., Oxygen Doping-Induced Photogeneration Loss in P3HT:PCBM Solar Cells, Sol. Energy Mater. Sol. Cells100, 185-191, 2012.
  118. Seemann A., Sauermann T., Lungenschmied C., Armbrus‌ter O., Bauer S., Egelhaaf H.J., and Hauch J., Reversible and Irreversible Degradation of Organic Solar Cell Performance by Oxygen, Sol. Energy85, 1238-1249, 2011.
  119. Manceau M., Rivaton A., Gardette J.L., Guillerez S., and Lemaître N., The Mechanism of Photo- and Thermooxidation of Poly(3-hexylthiophene) (P3HT) Reconsidered, Polym. Degrad. Stab.94, 898-907, 2009.
  120. Ebadian S., Gholamkhass B., Shambayati S., Holdcroft S., and Servati P., Effects of Annealing and Degradation on Regioregular Polythiophene-Based Bulk Heterojunction Organic Photovoltaic Devices, Sol. Energy Mater. Sol. Cells94, 2258-2264, 2010.
  121. Guerrero A., Pfannmöller M., Kovalenko A., Ripolles T.S., Heidari H., Bals S., Kaufmann L.D., Bisquert J., and Garcia-Belmonte G., Nanoscale Mapping by Electron Energy-Loss Spectroscopy Reveals Evolution of Organic Solar Cell Contact Selectivity, Org. Electron.16, 227-233, 2015.
  122. Conings B., Bertho S., Vandewal K., Senes A., D’Haen J., Manca J., and Janssen R.A., Modeling the Temperature Induced Degradation Kinetics of the Short Circuit Current in Organic Bulk Heterojunction Solar Cells, Appl. Phys. Lett.96, 81, 2010.
  123. Kim H.J., Lee H.H., and Kim J.J., Real Time Inves‌tigation of the Interface Between a P3HT:PCBM Layer and an Al Electrode during Thermal Annealing, Macromol. Rapid Commun.30, 1269-1273, 2009.
  124. Williams G., Wang Q., and Aziz H., The Photo-Stability of Polymer Solar Cells: Contact Photo-Degradation and the Benefits of Interfacial Layers, Adv. Funct. Mater.23, 2239-2247, 2013.
  125. Wang D.H., Pron A., Leclerc M., and Heeger A.J., Additive-Free Bulk-Heterojuction Solar Cells with Enhanced Power Conversion Efficiency, Comprising a Newly Designed Selenophene-Thienopyrrolodione Copolymer, Adv. Funct. Mater.23, 1297-1304, 2013.
  126. Zawacka N.K., Andersen T.R., Andreasen J.W., Rossander L.H., Dam H.F., Jørgensen M., and Krebs F.C., The Influence of Additives on the Morphology and Stability of Roll-to-Roll Processed Polymer Solar Cells Studied through Ex Situ and In Situ X-Ray Scattering, J. Mater. Chem. A2, 18644-18654, 2014.
  127. Tournebize A., Rivaton A., Peisert H., and Chassé T., The Crucial Role of Confined Residual Additives on the Photos‌tability of P3HT:PCBM Active Layers, J. Phys. Chem. C119, 9142-9148, 2015.
  128. Kim W., Kim J.K., Kim E., Ahn T.K., Wang D.H., and Park J.H., Conflicted Effects of a Solvent Additive on PTB7:PC71BM Bulk Heterojunction Solar Cells, J. Phys. Chem. C119, 5954-5961, 2015.
  129. Sharma A., Andersson G., and Lewis D.A., Role of Humidity on Indium and Tin Migration in Organic Photovoltaic Devices, Phys. Chem. Chem. Phys.13, 4381-4387, 2011.
  130. Lee S.T., Gao Z.Q., and Hung L.S., Metal Diffusion from Electrodes in Organic Light-Emitting Diodes, Appl. Phys. Lett.75, 1404-1406, 1999.
  131. Voroshazi E., Uytterhoeven G., Cnops K., Conard T., Favia P., Bender H., Muller R., and Cheyns D., Root-Cause Failure Analysis of Photocurrent Loss in Polythiophene: Fullerene-Based Inverted Solar Cells, ACS Appl. Mater. Interfaces7, 618-623, 2015.
  132. Rösch R., Tanenbaum D.M., Jørgensen M., Seeland M., Bärenklau M., Hermenau M., Voroshazi E., Lloyd M.T., Galagan Y., Zimmermann B., and Würfel U., Inves‌tigation of the Degradation Mechanisms of a Variety of Organic Photovoltaic Devices by Combination of Imaging Techniques-The ISOS-3 Inter-Laboratory Collaboration, Energy Environ. Sci.5, 6521-6540, 2012.
  133. Franke R., Maennig B., Petrich A., and Pfeiffer M., Long-Term Stability of Tandem Solar Cells Containing Small Organic Molecules, Sol. Energy Mater. Sol. Cells92, 732-735, 2008.
  134. Cheng P. and Zhan X., Stability of Organic Solar Cells: Challenges and Strategies, Chem. Soc. Rev.45, 2544-2582, 2016.
  135. Norrman K. and Krebs F.C., Lifetimes of Organic Photovoltaics: Using TOF-SIMS and 18O2 Isotopic Labelling to Characterise Chemical Degradation Mechanisms, Sol. Energy Mater. Sol. Cells90, 213-227, 2006.
  136. Reese M.O., Nardes A.M., Rupert B.L., Larsen R.E., Olson D.C., Lloyd M.T., Shaheen S.E., Ginley D.S., Rumbles G., and Kopidakis N., Photoinduced Degradation of Polymer and Polymer-Fullerene Active Layers: Experiment and Theory, Adv. Funct. Mater.20, 3476-3483, 2010.
  137. Schafferhans J., Baumann A., Wagenpfahl A., Deibel C., and Dyakonov V., Oxygen Doping of P3HT:PCBM Blends: Influence on Trap States, Charge Carrier Mobility and Solar Cell Performance, Org. Electron.11, 1693-1700, 2010.
  138. Züfle S., Neukom M.T., Altazin S., Zinggeler M., Chrapa M., Offermans T., and Ruhs‌taller B., An Effective Area Approach to Model Lateral Degradation in Organic Solar Cells, Adv. Energy Mater.5, 1500835, 2015.
  139. Parnell A.J., Cadby A.J., Dunbar A.D., Roberts G.L., Plumridge A., Dalgliesh R.M., Skoda M.W., and Jones R.A., Physical Mechanisms Responsible for the Water-Induced Degradation of PC61BM P3HT Photovoltaic Thin Films, Polym. Sci. B: Polym. Phys.54, 141-146, 2016.
  140. Krebs F.C., Gevorgyan S.A., and Als‌trup J., A Roll-to-Roll Process to Flexible Polymer Solar Cells: Model Studies, Manufacture and Operational Stability Studies, J. Mater. Chem.19, 5442-5451, 2009.
  141. Norrman K., Madsen M.V., Gevorgyan S.A., and Krebs F.C., Degradation Patterns in Water and Oxygen of an Inverted Polymer Solar Cell, J. Am. Chem. Soc.132, 16883-16892, 2010.
  142. Balderrama V.S., Es‌trada M., Han P.L., Granero P., Pallarés J., Ferré-Borrull J., and Marsal L.F., Degradation of Electrical Properties of PTB1:PCBM Solar Cells under Different Environments, Sol. Energy Mater. Sol. Cells125, 155-163, 2014.
  143. Pacios R., Chatten A.J., Kawano K., Durrant J.R., Bradley D.D., and Nelson J., Effects of Photo-Oxidation on the Performance of Poly[2-methoxy-5-(3′,7′-dimethyloctyloxy)-1,4-phenylene vinylene]:[6,6]-Phenyl C61-Butyric Acid Methyl Es‌ter Solar Cells, Adv. Funct. Mater.16, 2117-2126, 2006.
  144. Tournebize A., Bussière P.O., Wong-Wah-Chung P., Thérias S., Rivaton A., Gardette J.L., Beaupré S., and Leclerc M., Impact of UV-Visible Light on the Morphological and Photochemical Behavior of a Low-Bandgap Poly(2,7-Carbazole) Derivative for Use in High-Performance Solar Cells, Adv. Energy Mater.3, 478-487, 2013.
  145. Fraga Dominguez I., Topham P.D., Bussiere P.O., Bégué D., and Rivaton A., Unravelling the Photodegradation Mechanisms of a Low Bandgap Polymer by Combining Experimental and Modeling Approaches, J. Phys. Chem. C119, 2166-2176, 2015.
  146. Ournebize A., Bussiere P.O., Rivaton A., Gardette J.L., Medlej H., Hiorns R.C., Dagron-Lartigau C., Krebs F.C., and Norrman K., New Insights Into the Mechanisms of Photodegradation/Stabilization of P3HT:PCBM Active Layers Using Poly(3-hexyl-d 13-thiophene), Chem. Mater.25, 4522-4528, 2013.
  147. Grisorio R., Allegretta G., Mas‌trorilli P., and Suranna G.P., On the Degradation Process Involving Polyfluorenes and the Factors Governing Their Spectral Stability, Macromolecules44, 7977-7986, 2011.
  148. Burlingame Q., Tong X., Hankett J., Slootsky M., Chen Z., and Forres‌t S.R., Photochemical Origins of Burn-in Degradation in Small Molecular Weight Organic Photovoltaic Cells, Energy Environ. Sci.8, 1005-1010, 2015.
  149. Rivaton A., Chambon S., Manceau M., Gardette J.L., Lemaître N., and Guillerez S., Light-Induced Degradation of the Active Layer of Polymer-Based Solar Cells, Polym. Degrad. Stab.95, 278-284, 2010.
  150. Manor A., Katz E.A., Tromholt T., and Krebs F.C., Electrical and Photo-Induced Degradation of ZnO Layers in Organic Photovoltaics, Adv. Energy Mater.1, 836-843, 2011.
  151. Cheng P., Shi Q., Lin Y., Li Y., and Zhan X., Evolved Structure of Thiazolothiazole Based Small Molecules Towards Enhanced Efficiency in Organic Solar Cells, Org. Electron.14, 599-606, 2013.
  152. Dou L., Chen C.C., Yoshimura K., Ohya K., Chang W.H., Gao J., Liu Y., Richard E., and Yang Y., Synthesis of 5 H-Dithieno [3,2-b:2′,3′-d] Pyran as an Electron-Rich Building Block for Donor–Acceptor Type Low-Bandgap Polymers, Macromolecules46, 3384-3390, 2013.
  153. Zhan X., Tan Z.A., Domercq B., An Z., Zhang X., Barlow S., Li Y., Zhu D., Kippelen B., and Marder S.R., A High-Mobility Electron-Transport Polymer with Broad Absorption and Its Use in Field-Effect Transis‌tors and All-Polymer Solar Cells, J. Am. Chem. Soc.129, 7246-7247, 2007.
  154. De Gennes P.G. and Gennes P.G., Scaling Concepts in Polymer Physics, Cornell University, New York, USA, 1979.
  155. Wang T., Pearson A.J., Dunbar A.D., Staniec P.A., Watters D.C., Yi H., Ryan A.J., Jones R.A., Iraqi A., and Lidzey D.G., Correlating Structure with Function in Thermally Annealed PCDTBT:PC70BM Photovoltaic Blends, Adv. Funct. Mater.22, 1399-1408, 2012.
  156. Vitoratos E., Sakkopoulos S., Dalas E., Paliatsas N., Karageorgopoulos D., Petraki F., Kennou S., and Choulis S.A., Thermal Degradation Mechanisms of PEDOT:PSS, Org. Electron.10, 61-66, 2009.
  157. Dupont S.R., Novoa F., Voroshazi E., and Dauskardt R.H., Decohesion Kinetics of PEDOT:PSS Conducting Polymer Films, Adv. Funct. Mater.24, 1325-1332, 2014.
  158. Bruner C., Novoa F., Dupont S., and Dauskardt R., Decohesion Kinetics in Polymer Organic Solar Cells, ACS Appl. Mater. Interfaces6, 21474-21483, 2014.
  159. Dupont S.R., Voroshazi E., Heremans P., and Dauskardt R.H., Adhesion Properties of Inverted Polymer Solar Cells: Processing and Film Structure Parameters, Org. Electron.14, 1262-1270, 2013.
  160. Brand V., Bruner C., and Dauskardt R.H., Cohesion and Device Reliability in Organic Bulk Heterojunction Photovoltaic Cells, Sol. Energy Mater. Sol. Cells99, 182-189, 2012.
  161. Yang J., Siempelkamp B.D., Liu D., and Kelly T.L., Inves‌tigation of CH3NH3PbI3 Degradation Rates and Mechanisms in Controlled Humidity Environments Using In Situ Techniques, ACS Nano9, 1955-1963, 2015.
  162. Conings B., Drijkoningen J., Gauquelin N., Babayigit A., D’Haen J., D’Olieslaeger L., Ethirajan A., Verbeeck J., Manca J., Mosconi E., and Angelis F.D., Intrinsic Thermal Ins‌tability of Methylammonium Lead Trihalide Perovskite, Adv. Energy Mater.5, 1500477, 2015.
  163. Kwon Y.S., Lim J., Yun H.J., Kim Y.H., and Park T., A Diketopyrrolopyrrole-Containing Hole Transporting Conjugated Polymer for Use in Efficient Stable Organic–Inorganic Hybrid Solar Cells Based on a Perovskite, Energy Environ. Sci., 7, 1454, 2014.
  164. Koh T.M., Shanmugam V., Schlipf J., Oesinghaus L., Müller-Buschbaum P., Ramakrishnan N., Swamy V., Mathews N., Boix P.P., and Mhaisalkar S.G., Nanos‌tructuring Mixed-Dimensional Perovskites: A Route Toward Tunable, Efficient Photovoltaics, Adv. Mater.28, 3653-3661, 2016.
  165. Zheng H., Liu G., Zhu L., Ye J., Zhang X., Alsaedi A., Hayat T., Pan X., and Dai S., The Effect of Hydrophobicity of Ammonium Salts on Stability of Quasi-2D Perovskite Materials in Mois‌t Condition, Adv. Energy Mater.8, 1800051, 2018.
  166. Jørgensen M., Norrman K., and Krebs F.C., Stability/Degradation of Polymer Solar Cells, Sol. Energy Mater. Sol. Cells92, 686-714, 2008.
  167. Xu R.P., Li Y.Q., Jin T.Y., Liu Y.Q., Bao Q.Y., O’Carroll C., and Tang J.X., In Situ Observation of Light Illumination-Induced Degradation in Organometal Mixed-Halide Perovskite Films, ACS Appl. Mater. Interfaces10, 6737-6746, 2018.
  168. Ko Y.H., Prabhakaran P., Jalalah M., Lee S.J., Lee K.S., and Park J.G., Correlating Nano Black Spots and Optical Stability in Mixed Halide Perovskite Quantum Dots, J. Mater. Chem. C6, 7803-7813, 2018.
  169. An R., Zhang F., Zou X., Tang Y., Liang M., Oshchapovskyy I., Liu Y., Honarfar A., Zhong Y., Li, C., and Geng H., Photos‌tability and Photodegradation Processes in Colloidal CsPbI3 Perovskite Quantum Dots, ACS Appl. Mater. Interfaces10, 39222-39227, 2018.
  170. Huang S., Li Z., Wang B., Zhu N., Zhang C., Kong L., Zhang Q., Shan A., and Li L., Morphology Evolution and Degradation of CsPbBr3 Nanocrys‌tals under Blue Light-Emitting Diode Illumination, ACS Appl. Mater. Interfaces9, 7249-7258, 2017.
  171. Leijtens T., Eperon G.E., Pathak S., Abate A., Lee M.M., and Snaith H.J., Overcoming Ultraviolet Light Ins‌tability of Sensitized TiO2 with Meso-Supers‌tructured Organometal Tri-Halide Perovskite Solar Cells, Nat. Commun.4, 2885, 2013.
  172. Wang J., Chen Y., Liang M., Ge G., Zhou R., Sun Z., and Xue S., A New Thermal-Stable Truxene-Based Hole-Transporting Material for Perovskite Solar Cells, Dyes Pigm.125, 399-406, 2016.
  173. Matsui H., Okada K., Kitamura T., and Tanabe N., Thermal Stability of Dye-Sensitized Solar Cells with Current Collecting Grid, Sol. Energy Mater. Sol. Cells93, 1110-1115, 2009.
  174. He D., Du X., Zhang W., Xiao Z., and Ding L., Improving the Stability of P3HT/PC61BM Solar Cells by a Thermal Crosslinker, J. Mater. Chem. A1, 4589-4594, 2013.
  175. Derue L., Dautel O., Tournebize A., Drees M., Pan H., Berthumeyrie S., Pavageau B., Cloutet E., Chambon S., Hirsch L., and Rivaton A., Thermal Stabilisation of Polymer–Fullerene Bulk Heterojunction Morphology for Efficient Photovoltaic Solar Cells, Adv. Mater.26, 5831-5838, 2014.
  176. Rumer J.W., Ashraf R.S., Eisenmenger N.D., Huang Z., Meager I., Nielsen C.B., Schroeder B.C., Chabinyc M.L., and McCulloch I., Dual Function Additives: A Small Molecule Crosslinker for Enhanced Efficiency and Stability in Organic Solar Cells, Adv. Energy Mater.5, 1401426, 2015.
  177. Savagatrup S., Rodriquez D., Printz A.D., Sieval A.B., Hummelen J.C., and Lipomi D.J., [70] PCBM and Incompletely Separated Grades of Methanofullerenes Produce Bulk Heterojunctions with Increased Robus‌tness for Ultra-Flexible and Stretchable Electronics, Chem. Mater.27, 3902-3911, 2015.
  178. Kim H.J., Kim J.H., Ryu J.H., Kim Y., Kang H., Lee W.B., Kim T.S., and Kim B.J., Architectural Engineering of Rod–Coil Compatibilizers for Producing Mechanically and Thermally Stable Polymer Solar Cells, ACS Nano8, 10461-10470, 2014.
  179. Raïssi M., Erothu H., Ibarboure E., Cramail H., Vignau L., Cloutet E., and Hiorns R.C., Fullerene-Capped Copolymers for Bulk Heterojunctions: Device Stability and Efficiency Improvements, J. Mater. Chem. A3, 18207-18221, 2015.
  180. Raja R., Liu W.S., Hsiow C.Y., Rwei S.P., Chiu W.Y., and Wang L., Terthiophene–C60 Dyads as Donor/Acceptor Compatibilizers for Developing Highly Stable P3HT/PCBM Bulk Heterojunction Solar Cells, J. Mater. Chem. A3, 14401-14408, 2015.
  181. Wang S., Qu Y., Li S., Ye F., Chen Z., and Yang X., Improved Thermal Stability of Polymer Solar Cells by Incorporating Porphyrins, Adv. Funct. Mater.25, 748-757, 2015.
  182. Park H., Lee K.Y., Kim W., Shin H.W., Wang D.H., Ahn T.K., and Park J.H., Discrepancy of Optimum Ratio in Bulk Heterojunction Photovoltaic Devices: Initial Cell Efficiency vs Long-Term Stability, ACS Appl. Mater. Interfaces5, 1612-1618, 2013.
  183. Bertho S., Campo B., Piersimoni F., Spoltore D., D’Haen J., Lutsen L., Maes W., Vanderzande D., and Manca J., Improved Thermal Stability of Bulk Heterojunctions Based on Side-Chain Functionalized Poly(3-alkylthiophene) Copolymers and PCBM, Sol. Energy Mater. Sol. Cells110, 69-76, 2013.
  184. Oh J.Y., Shin M., Lee H.W., Lee Y.J., Baik H.K., and Jeong U., Enhanced Air Stability of Polymer Solar Cells with A Nanofibril-Based Photoactive Layer, ACS Appl. Mater. Interfaces6, 7759-7765, 2014.
  185. Li N. and Brabec C.J., Air-Processed Polymer Tandem Solar Cells with Power Conversion Efficiency Exceeding 10%, Energy Environ. Sci.8, 2902-2909, 2015.
  186. Wong H.C., Li Z., Tan C.H., Zhong H., Huang Z., Brons‌tein H., McCulloch I., Cabral J.T., and Durrant J.R., Morphological Stability and Performance of Polymer-Fullerene Solar Cells under Thermal Stress: The Impact of Photoinduced PC60BM Oligomerization, ACS Nano8, 1297-1308, 2014.
  187. Huang W., Gann E., Xu Z.Q., Thomsen L., Cheng Y.B., and McNeill C.R., A Facile Approach to Alleviate Photochemical Degradation in High Efficiency Polymer Solar Cells, J. Mater. Chem. A3, 16313-16319, 2015.
  188. Li Z., Wong H.C., Huang Z., Zhong H., Tan C.H., Tsoi W.C., Kim J.S., Durrant J.R., and Cabral J.T., Performance Enhancement of Fullerene-Based Solar Cells by Light Processing, Nat. Commun.4, 2227, 2013.
  189. Lim F.J., Krishnamoorthy A., and Ho G.W., Device Stability and Light-Soaking Characteris‌tics of High-Efficiency Benzodithiophene–Thienothiophene Copolymer-Based Inverted Organic Solar Cells with F-TiOx Electron-Transport Layer, ACS Appl. Mater. Interfaces7, 12119-12127, 2015.
  190. Lee S.H., Seo J.W., and Lee J.Y., Stable Inverted Small Molecular Organic Solar Cells Using a p-Doped Optical Spacer, Nanoscale7, 157-165, 2015.
  191. Hao M., Luo G., Shi K., Xie G., Wu K., Wu H., Yu G., Cao Y., and Yang C., Dithieno[3,2-b: 2′,3′-d]Pyridin-5 (4 H)-One-Based Polymers with a bandgap up to 2.02 eV for High Performance Field-Effect Transis‌tors and Polymer Solar Cells with an Open-Circuit Voltage up to 0.98 V and an Efficiency up to 6.84%, J. Mater. Chem. A3, 20516-20526, 2015.
  192. Hao X., Wang S., Sakurai T., Masuda S., and Akimoto K., Improvement of Stability for Small Molecule Organic Solar Cells by Suppressing the Trap Mediated Recombination, ACS Appl. Mater. Interfaces7, 18379-18386, 2015.
  193. Wang W., Schaffer C.J., Song L., Körs‌tgens V., Pröller S., Indari E.D., Wang T., Abdelsamie A., Berns‌torff S., and Müller-Buschbaum P., In Operando Morphology Inves‌tigation of Inverted Bulk Heterojunction Organic Solar Cells by GISAXS, J. Mater. Chem. A3, 8324-8331, 2015.
  194. Chang Y.M. and Leu C.Y., Conjugated Polyelectrolyte and Zinc Oxide Stacked Structure as an Interlayer in Highly Efficient and Stable Organic Photovoltaic Cells, J. Mater. Chem. A1, 6446-6451, 2013.
  195. Wang F., Tan Z.A., and Li Y., Solution-Processable Metal Oxides/Chelates as Electrode Buffer Layers for Efficient and Stable Polymer Solar Cells, Energy Environ. Sci.8, 1059-1091, 2015.
  196. Chueh C.C., Li C.Z., and Jen A.K.Y., Recent Progress and Perspective in Solution-Processed Interfacial Materials for Efficient and Stable Polymer and Organometal Perovskite Solar Cells, Energy Environ. Sci.8, 1160-1189, 2015.
  197. Yip H.L. and Jen A.K.Y., Recent Advances in Solution-Processed Interfacial Materials for Efficient and Stable Polymer Solar Cells, Energy Environ. Sci.5, 5994-6011, 2012.
  198. Wang Y., Luo Q., Wu Q., Wang Q., Zhu H., Chen L., Li Y.Q., Luo L., Ma C.Q., and MoO S.P., PEDOT: PSS Hybrid Hole Transporting Layer for Inverted Polymer Solar Cells, ACS Appl. Mater. Interfaces7, 7170-7179, 2015.
  199. Roth B., dos Reis Benatto G.A., Corazza M., Søndergaard R.R., Gevorgyan S.A., Jørgensen M., and Krebs F.C., The Critical Choice of PEDOT:PSS Additives for Long Term Stability of Roll-to-Roll Processed OPVs, Adv. Energy Mater.5, 1401912, 2015.
  200. Lee J.J., Lee S.H., Kim F.S., Choi H.H., and Kim J.H., Simultaneous Enhancement of the Efficiency and Stability of Organic Solar Cells Using PEDOT:PSS Grafted with a PEGME Buffer Layer, Org. Electron.26, 191-199, 2015.
  201. Hou X., Li Q., Cheng T., Yu L., Wang F., Lin J., Dai S., Li Y., and Tan Z.A., Improvement of the Power Conversion Efficiency and Long Term Stability of Polymer Solar Cells by Incorporation of Amphiphilic Nafion Doped PEDOT-PSS as a Hole Extraction Layer, J. Mater. Chem. A3, 18727-18734, 2015.
  202. Yi Q., Zhai P., Sun Y., Lou Y., Zhao J., Sun B., Patterson B., Luo H., Zhang W., Jiao L., and Wang H., Aqueous Solution-Deposited Molybdenum Oxide Films as an Anode Interfacial Layer for Organic Solar Cells, ACS Appl. Mater. Interfaces7, 18218-18224, 2015.
  203. Sun Y., Takacs C.J., Cowan S.R., Seo J.H., Gong X., Roy A., and Heeger A.J., Efficient, Air-Stable Bulk Heterojunction Polymer Solar Cells Using MoOx as the Anode Interfacial Layer, Adv. Mater.23, 2226-2230, 2011.
  204. Hu X., Chen L., and Chen Y., Universal and Versatile MoO3-Based Hole Transport Layers for Efficient and Stable Polymer Solar Cells, J. Phys. Chem. C118, 9930-9938, 2014.
  205. Manders J.R., Tsang S.W., Hartel M.J., Lai T.H., Chen S., Amb C.M., Reynolds J.R., and So F., Solution-Processed Nickel Oxide Hole Transport Layers in High Efficiency Polymer Photovoltaic Cells, Adv. Funct. Mater.23, 2993-3001, 2013.
  206. Zhai Z., Huang X., Xu M., Yuan J., Peng J., and Ma W., Greatly Reduced Processing Temperature for a Solution-Processed NiOx Buffer Layer in Polymer Solar Cells, Adv. Energy Mater.3, 1614-1622, 2013.
  207. Cho S.P., Yeo J.S., Kim D.Y., Na S.I., and Kim S.S., Brush Painted V2O5 Hole Transport Layer for Efficient and Air-Stable Polymer Solar Cells, Sol. Energy Mater. Sol. Cells132, 196-203, 2015.
  208. Qiu M., Zhu D., Bao X., Wang J., Wang X., and Yang R., WO3 with Surface Oxygen Cacancies as an Anode Buffer Layer for High Performance Polymer Solar Cells, J. Mater. Chem. A4, 894-900, 2016.
  209. Lien H.T., Wong D.P., Tsao N.H., Huang C.I., Su C., Chen K.H., and Chen L.C., Effect of Copper Oxide Oxidation State on the Polymer-Based Solar Cell Buffer Layers, ACS Appl. Mater. Interfaces6, 22445-22450, 2014.
  210. Wang K., Ren H., Yi C., Liu C., Wang H., Huang L., Zhang H., Karim A., and Gong X., Solution-Processed Fe3O4 Magnetic Nanoparticle Thin Film Aligned by an External Magnetos‌tatic Field as a Hole Extraction Layer for Polymer Solar Cells, ACS Appl. Mater. Interfaces5, 10325-10330, 2013.
  211. Yusoff A.R., Kim H.P., and Jang J., High Performance Organic Photovoltaics with Zinc Oxide and Graphene Oxide Buffer Layers, Nanoscale6, 1537-1544, 2014.
  212. Kim S.H., Lee C.H., Yun J.M., Noh Y.J., Kim S.S., Lee S., Jo S.M., Joh H.I., and Na S.I., Fluorine-Functionalized and Simultaneously Reduced Graphene Oxide as a Novel Hole Transporting Layer for Highly Efficient and Stable Organic Photovoltaic Cells, Nanoscale6, 7183-7187, 2014.
  213. Chen L., Du D., Sun K., Hou J., and Ouyang J., Improved Efficiency and Stability of Polymer Solar Cells Utilizing Two-Dimensional Reduced Graphene Oxide: Graphene Oxide Nanocomposites as Hole-Collection Material, ACS Appl. Mater. Interfaces6, 22334-22342, 2014.
  214. Liu J., Durs‌tock M., and Dai L., Graphene Oxide Derivatives as Hole- and Electron-Extraction Layers for High-Performance Polymer Solar Cells, Energy Environ. Sci.7, 1297-1306, 2014.
  215. Huang J.H. and Lee K.C., Highly Stable, Solution-Processable Phenothiazine Derivative as Hole Collection Material for Organic Solar Cells, ACS Appl. Mater. Interfaces6, 7680-7685, 2014.
  216. Noh Y.J., Park S.M., Yeo J.S., Kim D.Y., Kim S.S., and Na S.I., Efficient PEDOT:PSS-Free Polymer Solar Cells with an Easily Accessible Polyacrylonitrile Polymer Material as a Novel Solution-Processable Anode Interfacial Layer, ACS Appl. Mater. Interfaces7, 25032-25038, 2015.
  217. Dupont S.R., Oliver M., Krebs F.C., and Dauskardt R.H., Interlayer Adhesion in Roll-to-Roll Processed Flexible Inverted Polymer Solar Cells, Sol. Energy Mater. Sol. Cells97, 171-175, 2012.
  218. Kang D.J., Cho H.H., Lee I., Kim K.H., Kim H.J., Liao K., Kim T.S., and Kim B.J., Enhancing Mechanical Properties of Highly Efficient Polymer Solar Cells Using Size-Tuned Polymer Nanoparticles, ACS Appl. Mater. Interfaces7, 2668-2676, 2015.
  219. Savagatrup S., Chan E., Renteria-Garcia S.M., Printz A.D., Zaretski A.V., O’Connor T.F., Rodriquez D., Valle E., and Lipomi D.J., Plas‌ticization of PEDOT:PSS by Common Additives for Mechanically Robus‌t Organic Solar Cells and Wearable Sensors, Adv. Funct. Mater.25, 427-436, 2015.
  220. Zhu Z., Mankowski T., Balakrishnan K., Shikoh A.S., Touati F., Benammar M.A., Mansuripur M., and Falco C.M., Ultrahigh Aspect Ratio Copper-Nanowire-Based Hybrid Transparent Conductive Electrodes with PEDOT:PSS and Reduced Graphene Oxide Exhibiting Reduced Surface Roughness and Improved Stability, ACS Appl. Mater. Interfaces7, 16223-16230, 2015.
  221. Huang J.H., Ibrahem M.A., and Chu C.W., Wet-Milled Anatase Titanium Oxide Nanoparticles as a Buffer Layer for Air-Stable Bulk Heterojunction Solar Cells, Prog Photovolt.23, 1017-1024, 2015.
  222. Wang J., Lee Y.J., and Hsu J.W., One-Step Synthesis of ZnO Nanocrys‌tals in n-Butanol with Bandgap Control: Applications in Hybrid and Organic Photovoltaic Devices, J. Phys. Chem. C118, 18417-18423, 2014.
  223. Nikiforov M.P., Strzalka J., Jiang Z., and Darling S.B., Lanthanides: New Metallic Cathode Materials for Organic Photovoltaic Cells, Phys. Chem. Chem. Phys.15, 13052-13060, 2013.
  224. Chang Y.M., Zhu R., Richard E., Chen C.C., Li G., and Yang Y., Electros‌tatic Self-Assembly Conjugated Polyelectrolyte-Surfactant Complex as an Interlayer for High Performance Polymer Solar Cells, Adv. Funct. Mater.22, 3284-3289, 2012.
  225. Yin Z., Zheng Q., Chen S.C., Cai D., and Ma Y., Controllable ZnMgO Electron-Transporting Layers for Long-Term Stable Organic Solar Cells with 8.06% Efficiency after One-Year Storage, Adv. Energy Mater.6, 1501493, 2016.
  226. Venkatesan S., Ngo E., Khatiwada D., Zhang C., and Qiao Q., Enhanced Lifetime of Polymer Solar Cells by Surface Passivation of Metal Oxide Buffer Layers, ACS Appl. Mater. Interfaces7, 16093-16100, 2015.
  227. Pang C., Chellappan V., Yim J.H., Tan M.J., Goh G.T.W., Lee S., Zhang J., and de Mello J., Enhanced Performance Using an SU-8 Dielectric Interlayer in a Bulk Heterojunction Organic Solar Cell, ACS Appl. Mater. Interfaces7, 5219-5225, 2015.
  228. Courtright B.A. and Jenekhe S.A., Polyethylenimine Interfacial Layers in Inverted Organic Photovoltaic Devices: Effects of Ethoxylation and Molecular Weight on Efficiency and Temporal Stability, ACS Appl. Mater. Interfaces7, 26167-26175, 2015.
  229. Hu L., Wu F., Li C., Hu A., Hu X., Zhang Y., Chen L., and Chen Y., Alcohol-Soluble n-Type Conjugated Polyelectrolyte as Electron Transport Layer for Polymer Solar Cells, Macromolecules48, 5578-5586, 2015.
  230. Lin Z., Chang J., Zhang J., Jiang C., Wu J., and Zhu C., A Work-Function Tunable Polyelectrolyte Complex (PEI: PSS) as a Cathode Interfacial Layer for Inverted Organic Solar Cells, J. Mater. Chem. A2, 7788-7794., 2014.
  231. Cai P., Zhong S., Xu X., Chen J., Chen W., Huang F., Ma Y., and Cao Y., Using Ultra-High Molecular Weight Hydrophilic Polymer as Cathode Interlayer for Inverted Polymer Solar Cells: Enhanced Efficiency and Excellent Air-Stability, Sol. Energy Mater. Sol. Cells123, 104-111, 2014.
  232. Wu N., Luo Q., Bao Z., Lin J., Li Y.Q., and Ma C.Q., Zinc oxide: Conjugated Polymer Nanocomposite as Cathode Buffer Layer for Solution Processed Inverted Organic Solar Cells, Sol. Energy Mater. Sol. Cells141, 248-259, 2015.
  233. MacLeod B.A., De Villers B.J.T., Schulz P., Ndione P.F., Kim H., Giordano A.J., Zhu K., Marder S.R., Graham S., Berry J.J., and Kahn A., Stability of Inverted Organic Solar Cells with ZnO Contact Layers Deposited from Precursor Solutions, Energy Environ. Sci.8, 592-601, 2015.
  234. Kam Z., Wang X., Zhang J., and Wu J., Elimination of Burn-in Open-Circuit Voltage Degradation by ZnO Surface Modification in Organic Solar Cells, ACS Appl. Mater. Interfaces7, 1608-1615, 2015.
  235. Chang J., Lin Z., Jiang C., Zhang J., Zhu C., and Wu J., Improve the Operational Stability of the Inverted Organic Solar Cells Using Bilayer Metal Oxide Structure, ACS Appl. Mater. Interfaces6, 18861-18867, 2014.
  236. Hau S.K., Yip H.L., Baek N.S., Zou J., O’Malley K., and Jen A.K.Y., Air-Stable Inverted Flexible Polymer Solar Cells Using Zinc Oxide Nanoparticles as an Electron Selective Layer, Appl. Phys. Lett.92, 225, 2008.
  237. Zimmermann B., Würfel U., and Niggemann M., Longterm Stability of Efficient Inverted P3HT:PCBM Solar Cells, Sol. Energy Mater. Sol. Cells93, 491-496, 2009.
  238. He M., Jung J., Qiu F., and Lin Z., Graphene-Based Transparent Flexible Electrodes for Polymer Solar Cells, J. Mater. Chem.22, 24254-24264, 2012.
  239. Pang S., Hernandez Y., Feng X., and Müllen K., Graphene as Transparent Electrode Material for Organic Electronics, Adv. Mater.23, 2779-2795, 2011.
  240. Park H., Chang S., Zhou X., Kong J., Palacios T., and Gradečak S., Flexible Graphene Electrode-Based Organic Photovoltaics with Record-High Efficiency, Nano Lett.14, 5148-5154, 2014.
  241. Chang H., Wang G., Yang A., Tao X., Liu X., Shen Y., and Zheng Z., A Transparent, Flexible, Low-Temperature, and Solution-Processible Graphene Composite Electrode, Adv. Funct. Mater.20, 2893-2902, 2010.
  242. Fan X., Wang J., Wang H., Liu X., and Wang H., Bendable ITO-Free Organic Solar Cells with Highly Conductive and Flexible PEDOT:PSS Electrodes on Plas‌tic Subs‌trates, ACS Appl. Mater. Interfaces7, 16287-16295, 2015.
  243. Hau S.K., Yip H.L., Zou J., and Jen A.K.Y., Indium Tin Oxide-Free Semi-Transparent Inverted Polymer Solar Cells Using Conducting Polymer as Both Bottom and Top Electrodes, Org. Electron.10, 1401-1407, 2009.
  244. Galagan Y., Mescheloff A., Veens‌tra S.C., Andriessen R., and Katz E.A., Reversible Degradation in ITO-Containing Organic Photovoltaics under Concentrated Sunlight, Phys. Chem. Chem. Phys.17, 3891-3897, 2015.
  245. Lo M.F., Ng T.W., Mo H.W., and Lee C.S., Direct Threat of a UV-Ozone Treated Indium-Tin-Oxide Subs‌trate to the Stabilities of Common Organic Semiconductors, Adv. Funct. Mater.23, 1718-1723, 2013.
  246. Mengis‌tie D.A., Ibrahem M.A., Wang P.C., and Chu C.W., Highly Conductive PEDOT:PSS Treated with Formic Acid for ITO-Free Polymer Solar Cells, ACS Appl. Mater. Interfaces6, 2292-2299, 2014.
  247. Heo S.W., Lee E.J., Seong K.W., and Moon D.K., Enhanced Stability in Polymer Solar Cells by Controlling the Electrode Work Function via Modification of Indium Tin Oxide, Sol. Energy Mater. Sol. Cells115, 123-128, 2013.
  248. An C.J., Yoo H.W., Cho C., Park J.M., Choi J.K., Jin M.L., Lee J.Y., and Jung H.T., Surface Plasmon Assis‌ted High Performance Top-Illuminated Polymer Solar Cells with Nanos‌tructured Ag Rear Electrodes, J. Mater. Chem. A2, 2915-2921, 2014.
  249. Yambem S.D., Liao K.S., Alley N.J., and Curran S.A., Stable Organic Photovoltaics Using Ag Thin Film Anodes, J. Mater. Chem.22, 6894-6898, 2012.
  250. Zhang Z.G., Qi B., Jin Z., Chi D., Qi Z., Li Y.F., and Wang J.Z., Perylene Diimides: A Thickness-Insensitive Cathode Interlayer for High Performance Polymer Solar Cells, Energy Environ. Sci., 2014, 1966–1973, 2015.
  251. Yeom H.R., Heo J., Kim G.H., Ko S.J., Song S., Jo Y., Kim D.S., Walker B., and Kim J.Y., Optimal Top Electrodes for Inverted Polymer Solar Cells, Phys. Chem. Chem. Phys.17, 2152-2159, 2015.
  252. Tan W.Y., Wang R., Li M., Liu G., Chen P., Li X.C., Lu S.M., Zhu H.L., Peng Q.M., Zhu X.H., and Chen W., Lending Triarylphosphine Oxide to Phenanthroline: A Facile Approach to High-Performance Organic Small-Molecule Cathode Interfacial Material for Organic Photovoltaics Utilizing Air-Stable Cathodes, Adv. Funct. Mater.24, 6540-6547, 2014.
  253. Khan T.M., Zhou Y., Dindar A., Shim J.W., Fuentes-Hernandez C., and Kippelen B., Organic Photovoltaic Cells with Stable Top Metal Electrodes Modified with Polyethylenimine, ACS Appl. Mater. Interfaces6, 6202-6207, 2014.
  254. Sapkota S.B., Spies A., Zimmermann B., Dürr I., and Würfel U., Promising Long-Term Stability of Encapsulated ITO-Free Bulk-Heterojunction Organic Solar Cells Under Different Aging Conditions, Sol. Energy Mater. Sol. Cells130, 144-150, 2014.
  255. Elkington D., Cooling N., Zhou X.J., Belcher W.J., and Das‌toor P.C., Single-Step Annealing and Encapsulation for Organic Photovoltaics Using an Exothermically-Setting Encapsulant Material, Sol. Energy Mater. Sol. Cells124, 75-78, 2014.
  256. Romero-Gomez P., Betancur R., Martinez-Otero A., Elias X., Mariano M., Romero B., Arredondo B., Vergaz R., and Martorell J., Enhanced Stability in Semi-Transparent PTB7/PC71BM Photovoltaic Cells, Sol. Energy Mater. Sol. Cells137, 44-49, 2015.
  257. Yamaguchi H., Grans‌trom J., Nie W., Sojoudi H., Fujita T., Voiry D., Chen M., Gupta G., Mohite A.D., Graham S., and Chhowalla M., Reduced Graphene Oxide Thin Films as Ultrabarriers for Organic Electronics, Adv. Energy Mater.4, 1300986, 2014.
  258. Garg A., Gupta S.K., Jasieniak J.J., Singh T.B., and Watkins S.E., Improved Lifetimes of Organic Solar Cells with Solution-Processed Molybdenum Oxide Anode-Modifying Layers, Prog. Photovolt.23, 989-996, 2015.
  259. Aluicio-Sarduy E., Baidak A., Vougioukalakis G.C., and Keivanidis P.E., Phosphorimetric Characterization of Solution-Processed Polymeric Oxygen Barriers for the Encapsulation of Organic Electronics, J. Phys. Chem. C118, 2361-2369, 2014.
  260. Roesch R., Eberhardt K.R., Engmann S., Gobsch G., and Hoppe H., Polymer Solar Cells with Enhanced Lifetime by Improved Electrode Stability and Sealing, Sol. Energy Mater. Sol. Cells117, 59-66, 2013.
  261. Nikiforov M.P., Strzalka J., and Darling S.B., Delineation of the Effects of Water and Oxygen on the Degradation of Organic Photovoltaic Devices, Sol. Energy Mater. Sol. Cells110, 36-42, 2013.
  262. Chen N., Kovacik P., Howden R.M., Wang X., Lee S., and Gleason K.K., Low Subs‌trate Temperature Encapsulation for Flexible Electrodes and Organic Photovoltaics, Adv. Energy Mater.5, 1401442, 2015.
  263. Morlier A., Cros S., Garandet J.P., and Alberola N., Gas Barrier Properties of Solution Processed Composite Multilayer Structures for Organic Solar Cells Encapsulation, Sol. Energy Mater. Sol. Cells115, 93-99, 2013.
  264. Lee H.J., Kim H.P., Kim H.M., Youn J.H., Nam D.H., Lee Y.G., Lee J.G., Bin Mohd Yusoff A.R., and Jang J., Solution Processed Encapsulation for Organic Photovoltaics, Sol. Energy Mater. Sol. Cells111, 97-101, 2013.
  265. Sivula K., Luscombe C.K., Thompson B.C., and Fréchet J.M., Enhancing the Thermal Stability of Polythiophene: Fullerene Solar Cells by Decreasing Effective Polymer Regioregularity, J. Am. Chem. Soc.128, 13988-13989, 2006.
  266. Woo C.H., Thompson B.C., Kim B.J., Toney M.F., and Fréchet J.M., The Influence of Poly(3-hexylthiophene) Regioregularity on Fullerene-Composite Solar Cell Performance, J. Am. Chem. Soc.130, 16324-16329, 2008.
  267. Kim B.J., Miyamoto Y., Ma B., and Frechet J.M., Photocrosslinkable Polythiophenes for Efficient, Thermally Stable, Organic Photovoltaics, Adv. Funct. Mater.19, 2273-2281, 2009.
  268. Griffini G., Douglas J.D., Piliego C., Holcombe T.W., Turri S., Fréchet J.M., and Mynar J.L., Long-Term Thermal Stability of High-Efficiency Polymer Solar Cells Based on Photocrosslinkable Donor-Acceptor Conjugated Polymers, Adv. Mater.23, 1660-1664, 2011.
  269. Yao K., Chen L., Li F., Wang P., and Chen Y., Cooperative Assembly Donor–Acceptor Sys‌tem Induced by Intermolecular Hydrogen Bonds Leading to Oriented Nanomorphology for Optimized Photovoltaic Performance, J. Phys. Chem. C116, 714-721, 2012.
  270. Khiev S., Derue L., Ayenew G., Medlej H., Brown R., Rubatat L., Hiorns R.C., Wantz G., and Dagron-Lartigau C., Enhanced Thermal Stability of Organic Solar Cells by Using Photolinkable End-Capped Polythiophenes, Polym. Chem.4, 4145-4150, 2013.
  271. Yau C.P., Wang S., Treat N.D., Fei Z., Tremolet de Villers B.J., Chabinyc M.L., and Heeney M., Inves‌tigation of Radical and Cationic Cross-Linking in High-Efficiency, Low Band Gap Solar Cell Polymers, Adv. Energy Mater.5, 1401228, 2015.
  272. Waters H., Kettle J., Chang S.W., Su C.J., Wu W.R., Jeng U.S., Tsai Y.C., and Horie M., Organic Photovoltaics Based on a Crosslinkable PCPDTBT Analogue; Synthesis, Morphological Studies, Solar Cell Performance and Enhanced Lifetime, J. Mater. Chem. A1, 7370-7378, 2013.
  273. Carlé J.E., Andreasen B., Tromholt T., Madsen M.V., Norrman K., Jørgensen M., and Krebs F.C., Comparative Studies of Photochemical Cross-Linking Methods for Stabilizing the Bulk Hetero-Junction Morphology in Polymer Solar Cells, J. Mater. Chem.22, 24417-24423, 2012.
  274. Carlé J.E., Helgesen M., Zawacka N.K., Madsen M.V., Bundgaard E., and Krebs F.C., A Comparative Study of Fluorine Subs‌tituents for Enhanced Stability of Flexible and ITO-Free High-Performance Polymer Solar Cells, Polym. Sci. B: Polym. Phys.52, 893-899, 2014.
  275. Nguyen T.L., Choi H., and Ko S.J., Semi-Crys‌talline Photovoltaic Polymers with Efficiency Exceeding 9% in a ∼300 nm Thick Conventional Single-Cell Device, Energy Environ. Sci.7, 3040-3051, 2014.
  276. Li Z., Wu F., Lv H., Yang D., Chen Z., Zhao X., and Yang X., Side-Chain Engineering for Enhancing the Thermal Stability of Polymer Solar Cells, Adv. Mater.27, 6999-7003, 2015.
  277. Morse G.E., Tournebize A., Rivaton A., Chassé T., Taviot-Gueho C., Blouin N., Lozman O.R., and Tierney S., The Effect of Polymer Solubilizing Side-Chains on Solar Cell Stability, Phys. Chem. Chem. Phys.17, 11884-11897, 2015.
  278. Kes‌ters J., Kudret S., Bertho S., Van den Brande N., Defour M., Van Mele B., Penxten H., Lutsen L., Manca J., Vanderzande D., and Maes W., Enhanced Intrinsic Stability of the Bulk Heterojunction Active Layer Blend of Polymer Solar Cells by Varying the Polymer Side Chain Pattern, Org. Electron.15, 549-562, 2014.
  279. Kes‌ters J., Vers‌tappen P., Raymakers J., Vanormelingen W., Drijkoningen J., D’Haen J., Manca J., Lutsen L., Vanderzande D., and Maes W., Enhanced Organic Solar Cell Stability by Polymer (PCPDTBT) Side Chain Functionalization, Chem. Mater.27, 1332-1341, 2015.
  280. Savagatrup S., Makaram A.S., Burke D.J., and Lipomi D.J., Mechanical Properties of Conjugated Polymers and Polymer-Fullerene Composites as a Function of Molecular Structure, Adv. Funct. Mater.24, 1169-1181, 2014.
  281. Savagatrup S., Printz A.D., Rodriquez D., and Lipomi D.J., Bes‌t of Both Worlds: Conjugated Polymers Exhibiting Good Photovoltaic Behavior and High Tensile Elas‌ticity, Macromolecules47, 1981-1992, 2014.
  282. Chambon S., Manceau M., Firon M., Cros S., Rivaton A., and Gardette J.L., Photo-Oxidation in an 18O2 Atmosphere: A Powerful Tool to Elucidate the Mechanism of UV–Visible Light Oxidation of Polymers–Application to the Photodegradation of MDMO-PPV, Polymer49, 3288-3294, 2008.
  283. Manceau M., Gaume J., Rivaton A., Gardette J.L., Monier G., and Bideux L., Further Insights Into the Photodegradation of Poly(3-hexylthiophene) by Means of X-Ray Photoelectron Spectroscopy, Thin Solid Films518, 7113-7118, 2010.
  284. Krebs F.C. and Spanggaard H., Significant Improvement of Polymer Solar Cell Stability, Chem. Mater.17, 5235-5237, 2005.
  285. Bjerring M., Nielsen J.S., Siu A., Nielsen N.C., and Krebs F.C., An Explanation for the High Stability of Polycarboxythiophenes in Photovoltaic Devices-A Solid-State NMR Dipolar Recoupling Study, Sol. Energy Mater. Sol. Cells92, 772-784, 2008.
  286. Gevorgyan S.A. and Krebs F.C., Bulk Heterojunctions Based on Native Polythiophene, Chem. Mater.20, 4386-4390, 2008.
  287. Han X., Chen X., and Holdcroft S., Nanos‌tructured Morphologies and Topologies of π-Conjugated Polymers from Thermally Reactive Polymer Blends, Adv. Mater.19, 1697-1702, 2007.
  288. Manceau M., Rivaton A., and Gardette J.L., Involvement of Singlet Oxygen in the Solid-State Photochemis‌try of P3HT, Macromol. Rapid Commun.29, 1823-1827, 2008.
  289. Lira-Cantu M., Norrman K., Andreasen J.W., and Krebs F.C., Oxygen Release and Exchange in Niobium Oxide MEHPPV Hybrid Solar Cells, Chem. Mater.18, 5684-5690, 2006.
  290. Norrman K., Larsen N.B., and Krebs F.C., Lifetimes of Organic Photovoltaics: Combining Chemical and Physical Characterisation Techniques to Study Degradation Mechanisms, Sol. Energy Mater. Sol. Cells90, 2793-2814, 2006.
  291. Chambon S., Rivaton A., Gardette J.L., and Firon M., Durability of MDMO-PPV and MDMO-PPV:PCBM Blends under Illumination in the Absence of Oxygen, Sol. Energy Mater. Sol. Cells92, 785-792, 2008.
  292. Vandenbergh J., Conings B., Bertho S., Kes‌ters J., Spoltore D., Esiner S., Zhao J., Van Assche G., Wienk M.M., Maes W., and Lutsen L., Thermal Stability of Poly[2-methoxy-5-(2′-phenylethoxy)-1,4-phenylenevinylene](MPE-PPV):Fullerene Bulk Heterojunction Solar Cells, Macromolecules44, 8470-8478, 2011.
  293. Zhao J., Bertho S., Vandenbergh J., Van Assche G., Manca J., Vanderzande D., Yin X., Shi J., Cleij T., Lutsen L., and Van Mele B., Phase Behavior of PCBM Blends with Different Conjugated Polymers, Phys. Chem. Chem. Phys.13, 12285-12292, 2011.
  294. Bertho S., Janssen G., Cleij T.J., Conings B., Moons W., Gadisa A., D’Haen J., Goovaerts E., Lutsen L., Manca J., and Vanderzande D., Effect of Temperature on the Morphological and Photovoltaic Stability of Bulk Heterojunction Polymer: Fullerene Solar Cells, Sol. Energy Mater. Sol. Cells92, 753-760, 2008.
  295. Bundgaard E., Helgesen M., Carlé J.E., Krebs F.C., and Jørgensen M., Advanced Functional Polymers for Increasing the Stability of Organic Photovoltaics, Macromol. Chem. Phys.214, 1546-1558, 2013.
  296. Helgesen M., Madsen M.V., Andreasen B., Tromholt T., Andreasen J.W., and Krebs F.C., Thermally Reactive Thiazolo [5,4-d] Thiazole Based Copolymers for High Photochemical Stability in Polymer Solar Cells, Polym. Chem.2, 2536-2542, 2011.
  297. Manceau M., Helgesen M., and Krebs F.C., Thermo-Cleavable Polymers: Materials with Enhanced Photochemical Stability, Polym. Degrad. Stab.95, 2666-2669, 2010.
  298. Vers‌tappen P., Kes‌ters J., D’Olieslaeger L., Drijkoningen J., Cardinaletti I., Vangerven T., Bruijnaers B.J., Willems R.E., D’Haen J., Manca J.V., and Lutsen L., Simultaneous Enhancement of Solar Cell Efficiency and Stability by Reducing the Side Chain Density on Fluorinated PCPDTQx Copolymers, Macromolecules48, 3873-3882 2015.
  299. Yao K., Chen L., Hu T., and Chen Y., Photocrosslinkable Liquid-Crys‌talline Polymers for Stable Photovoltaics by Adjus‌ting Side-Chains Spacing and Fullerene Size to Control Intercalation, Org. Electron.13, 1443-1455, 2012.
  300. Drees M., Hoppe H., Winder C., Neugebauer H., Sariciftci N.S., Schwinger W., Schäffler F., Topf C., Scharber M.C., Zhu Z., and Gaudiana R., Stabilization of the Nanomorphology of Polymer-Fullerene “Bulk Heterojunction” Blends Using a Novel Polymerizable Fullerene Derivative, J. Mater. Chem.15, 5158-5163, 2005.
  301. Liang W.W., Chang C.Y., Lai Y.Y., Cheng S.W., Chang H.H., Lai Y.Y., Cheng Y.J., Wang C.L., and Hsu C.S., Formation of Nanos‌tructured Fullerene Interlayer through Accelerated Self-Assembly and Cross-Linking of Trichlorosilane Moieties Leading to Enhanced Efficiency of Photovoltaic Cells, Macromolecules46, 4781-4789, 2013.
  302. Helgesen M., Sørensen T.J., Manceau M., and Krebs F.C., Photochemical Stability and Photovoltaic Performance of Low-Band Gap Polymers Based on Dithiophene with Different Bridging Atoms, Polym. Chem.2, 1355-1361, 2011.
  303. Bundgaard E., Hagemann O., Bjerring M., Nielsen N.C., Andreasen J.W., Andreasen B., and Krebs F.C., Removal of Solubilizing Side Chains at Low Temperature: A New Route to Native Poly(thiophene), Macromolecules45, 3644-3646, 2012.
  304. Renaud C., Mougnier S.J., Pavlopoulou E., Brochon C., Fleury G., Deribew D., Portale G., Cloutet E., Chambon S., Vignau L., and Hadziioannou G., Block Copolymer as a Nanos‌tructuring Agent for High-Efficiency and Annealing-Free Bulk Heterojunction Organic Solar Cells, Adv. Mater.24, 2196-2201, 2012.
  305. Zhang Y., Yip H.L., Acton O., Hau S.K., Huang F., and Jen A.K.Y., A Simple and Effective Way of Achieving Highly Efficient and Thermally Stable Bulk-Heterojunction Polymer Solar Cells Using Amorphous Fullerene Derivatives as Electron Acceptor, Chem. Mater.21, 2598-2600, 2009.
  306. Liao M.H., Tsai C.E., Lai Y.Y., Cao F.Y., Wu J.S., Wang C.L., Hsu C.S., Liau I., and Cheng Y.J., Morphological Stabilization by Supramolecular Perfluorophenyl-C60 Interactions Leading to Efficient and Thermally Stable Organic Photovoltaics, Adv. Funct. Mater.24, 1418-1429, 2014.
  307. Hadi A., Hekmatshoar M.H., Abbasi F., and Agbolaghi S., A Focus on Charge Carrier Recombination and Energy Conversion Efficiency in Nanohybrid Photovoltaics, J. Iranian Chem. Soc.17, 2233-2242, 2020.
  308. Petersen M.H., Gevorgyan S.A., and Krebs F.C., Thermocleavable Low Band Gap Polymers and Solar Cells therefrom with Remarkable Stability toward Oxygen, Macromolecules41, 8986-8994, 2008.
  309. Xiao C., Zhang G., and Agbolaghi S., Stability of Poly(3-Hexylthiophene): Phenyl-C71-Butyric Acid Methyl Es‌ter Solar Cells Modified by Pre-designed Supramolecular Nanos‌tructures, J. Electron. Mater., 1-13, 2020.
  310. Yuan Q., Zhang Z., Li L., Agbolaghi S., and Mousavi S., Improved Stability in P3HT:PCBM Photovoltaics by Incorporation of Well-Designed Polythiophene/Graphene Compositions, Polym. Int., 69, 833-846, 2020.
  311. Carlé J.E., Helgesen M., Madsen M.V., Bundgaard E., and Krebs F.C., Upscaling from Single Cells to Modules-Fabrication of Vacuum- and ITO-Free Polymer Solar Cells on Flexible Subs‌trates with Long Lifetime, J. Mater. Chem. C2, 1290-1297, 2014.
  312. Ryu T.I., Yoon Y., Kim J.H., Hwang D.H., Ko M.J., Lee D.K., Kim J.Y., Kim H., Park N.G., Kim B., and Son H.J., Simultaneous Enhancement of Solar Cell Efficiency and Photos‌tability via Chemical Tuning of Electron Donating Units in Diketopyrrolopyrrole-Based Push–Pull Type Polymers, Macromolecules47, 6270-6280, 2014.
  313. Cons‌tantinou I., Lai T.H., Zhao D., Klump E.D., Deininger J.J., Lo C.K., Reynolds J.R., and So F., High Efficiency Air-Processed Dithienogermole-Based Polymer Solar Cells, ACS Appl. Mater. Interfaces7, 4826-4832, 2015.
  314. Wood S., Wade J., Shahid M., Collado-Fregoso E., Bradley D.D., Durrant J.R., Heeney M., and Kim J.S., Natures of Optical Absorption Transitions and Excitation Energy Dependent Photos‌tability of Diketopyrrolopyrrole (DPP)-Based Photovoltaic Copolymers, Energy Environ. Sci.8, 3222-3232, 2015.
  315. Printz A.D., Savagatrup S., Burke D.J., Purdy T.N., and Lipomi D.J., Increased Elas‌ticity of a Low-Bandgap Conjugated Copolymer by Random Segmentation for Mechanically Robus‌t Solar Cells, RSC Adv.4, 13635-13643, 2014.
  316. Müller C., On the Glass Transition of Polymer Semiconductors and Its Impact on Polymer Solar Cell Stability, Chem. Mater.27, 2740-2754, 2015.
  317. Lee Y.H., Chen W.C., Chiang C.J., Kau K.C., Liou W.S., Lee Y.P., Wang L., and Dai C.A., A New Strategy for Fabricating Organic Photovoltaic Devices with Stable D/A Double-Channel Network to Enhance Performance Using Self-Assembling All-Conjugated Diblock Copolymer, Nano Energy13, 103-116, 2015.
  318. Gao D., Hollinger J., and Seferos D.S., Selenophene-Thiophene Block Copolymer Solar Cells with Thermos‌table Nanos‌tructures, ACS Nano6, 7114-7121, 2012.
  319. Lin Y., Lim J.A., Wei Q., Mannsfeld S.C., Briseno A.L., and Watkins J.J., Cooperative Assembly of Hydrogen-Bbonded Diblock Copolythiophene/Fullerene Blends for Photovoltaic Devices with Well-Defined Morphologies and Enhanced Stability, Chem. Mater.24, 622-632, 2012.
  320. Kong J., Song S., Yoo M., Lee G.Y., Kwon O., Park J.K., Back H., Kim G., Lee S.H., Suh H., and Lee K., Long-Term Stable Polymer Solar Cells with Significantly Reduced Burn-in Loss, Nat. Commun.5, 1-8, 2014.
  321. Papadopoulos P., Floudas G., Chi C., and Wegner G., Molecular Dynamics of Oligofluorenes: A Dielectric Spectroscopy Inves‌tigation, J. Chem. Phys.120, 2368-2374, 2004.
  322. Bruner C. and Dauskardt R., Role of Molecular Weight on the Mechanical Device Properties of Organic Polymer Solar Cells, Macromolecules47, 1117-1121, 2014.
  323. Park S.H., Yang C., Cowan S., Lee J.K., Wudl F., Lee K., and Heeger A.J., Isomeric Iminofullerenes as Acceptors in Bulk Heterojunction Organic Solar Cells, J. Mater. Chem.19, 5624-5628, 2009.
  324. Kim S.O., Chung D.S., Cha H., Jang J.W., Kim Y.H., Kang J.W., Jeong Y.S., Park C.E., and Kwon S.K., Thermally Stable Organic Bulk Heterojunction Photovoltaic Cells Incorporating an Amorphous Fullerene Derivative as an Electron Acceptor, Sol. Energy Mater. Sol. Cells95, 432-439, 2011.
  325. Dis‌tler A., Sauermann T., Egelhaaf H.J., Rodman S., Waller D., Cheon K.S., Lee M., and Guldi D.M., The Effect of PCBM Dimerization on the Performance of Bulk Heterojunction Solar Cells, Adv. Energy Mater.4, 1300693, 2014.
  326. Meng X., Zhang W., Tan Z.A., Li Y., Ma Y., Wang T., Jiang L., Shu C., and Wang C., Highly Efficient and Thermally Stable Polymer Solar Cells with Dihydronaphthyl-Based [70] Fullerene Bisadduct Derivative as the Acceptor, Adv. Funct. Mater.22, 2187-2193, 2012.
  327. Chen S., Ye G., Xiao Z., and Ding L., Efficient and Thermally Stable Polymer Solar Cells Based on a 54π-Electron Fullerene Acceptor, J. Mater. Chem. A1, 5562-5566, 2013.
  328. Lin, Y. and Zhan X., Non-Fullerene Acceptors for Organic Photovoltaics: An Emerging Horizon, Mater. Horiz.1, 470-488, 2014.
  329. Anthony J.E., Facchetti A., Heeney M., Marder S.R., and Zhan X., n-Type Organic Semiconductors in Organic Electronics, Adv. Mater.22, 3876-3892, 2010.
  330. Facchetti A., Polymer Donor–Polymer Acceptor (All-Polymer) Solar Cells, Mater. Today16, 123-132, 2013.
  331. Cheng P., Bai H., Zawacka N.K., Andersen T.R., Liu W., Bundgaard E., Jørgensen M., Chen H., Krebs F.C., and Zhan X., Roll-Coated Fabrication of Fullerene-Free Organic Solar Cells with Improved Stability, Adv. Sci.2, 1500096, 2015.
  332. Lin Y., Zhang Z.G., Bai H., Wang J., Yao Y., Li Y., Zhu D., and Zhan X., High-Performance Fullerene-Free Polymer Solar Cells with 6.31% Efficiency, Energy Environ. Sci.8, 610-616, 2015.
  333. Holliday S., Ashraf R.S., Nielsen C.B., Kirkus M., Röhr J.A., Tan C.H., Collado-Fregoso E., Knall A.C., Durrant J.R., Nelson J., and McCulloch I., A Rhodanine Flanked Nonfullerene Acceptor for Solution-Processed Organic Photovoltaics, J. Am. Chem. Soc.137, 898-904, 2015.
  334. Li S., Liu W., Shi M., Mai J., Lau T.K., Wan J., Lu X., Li C.Z., and Chen H., A Spirobifluorene and Diketopyrrolopyrrole Moieties Based Non-Fullerene Acceptor for Efficient and Thermally Stable Polymer Solar Cells with High Open-Circuit Voltage, Energy Environ. Sci.9, 604-610, 2016.
  1. Kim T., Kim J.H., Kang T.E., Lee C., Kang H., Shin M., Wang C., Ma B., Jeong U., Kim T.S., and Kim B.J., Flexible, Highly Efficient All-Polymer Solar Cells, Nat. Commun.6, 1-7, 2015.