اثر غلظت عامل هسته‌زا بر سینتیک بلورش مذاب ناهم‌دمای کوپلیمر ضربه‌ای پلی‌پروپیلن در هسته‌زایی بتا

نوع مقاله : پژوهشی

نویسندگان

تهران، پژوهشگاه پلیمر و پتروشیمی ایران، پژوهشکده فرایند، گروه پلاستیک، صندوق پستی 112- 14975

چکیده

فرضیه: ‌هسته‌زایی بتا در هم‌افزایی به فاز لاستیکی کوپلیمر ضربه‌ای پلی‌پروپیلن (b-IPC) موجب افزایش استحکام ضربه‌ای در دمای کم می‌شود. مقدار بلورش عامل اصلی مؤثر بر عملکرد مکانیکی و استحکام ضربه‌ای است. گام مهم در توسعه کاربرد این پلیمر در مقیاس صنعتی، مطالعه سینتیک بلورش آن به‌ویژه در حالت ناهم‌دماست که با فرایندهای صنعتی ارتباط بیشتری دارد. بدین‌منظور، در این مقاله اثر غلظت عامل هسته‌زای ‌‌b بر سینتیک بلورش ناهم‌دمای b-IPC با مدل‌های نظری بررسی شده است.
روش‌ها: سینتیک بلورش مذاب ناهم‌دمای نمونه‌های b-IPC با دو مقدار مختلف کلسیم پیملات به‌عنوان عامل هسته‌زای بتا که با روش اختلاط محلولی تهیه شده بودند، در سرعت‌های مختلف سرمایش (1، 10 و 25C/min) به‌کمک گرماسنجی پویشی تفاضلی (DSC) بررسی شد. همچنین، برای تأیید تشکیل فاز بلوری b، الگوی پراش پرتو X برای کوپلیمر ضربه‌ای پلی‌پروپیلن دارای عامل هسته‌زای بتا تهیه شد.
یافته‌ها: نتایج نشان داد، با افزایش غلظت عامل هسته‌زا بتا، مقدار بلورش کلی نمونه افزایش یافت. همچنین، افزایش سرعت سرمایش و غلظت عامل هسته‌زا به نفع تشکیل بلور بتا بود. از سوی دیگر، نتایج محاسبه زمان نیمه‌عمر بلورش، تغییرات سرعت تبدیل با بلورش نسبی، تحلیل سینتیکی Mo و ارزیابی انرژی فعال‌سازی براساس روش Kissinger نشان داد، هر چقدر سهم بلور بتا بیشتر و سهم a کمتر باشد، سینتیک بلورش کندتر می‌شود. بنابراین، افزایش غلظت عامل هسته‌زای بتا سبب کاهش سرعت بلورش می‌شود. مدل سنتیکی Ozawa به‌دلیل وجود عامل هسته‌زا و نیز بلورش ثانویه، ناکارآمد بود، درحالی که تحلیل Mo به‌خوبی توانست اثر غلظت عامل هسته‌زا را بر سینتیک بلورش روشن سازد.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of Nucleating Agent Concentration on Non-Isothermal Melt Crys‌tallization Kinetics of b-Nucleated Impact Polypropylene Copolymer

نویسندگان [English]

  • Mina Farahani
  • Yousef Jahani
Department of Plas‌tics, Faculty of Processing, Iran Polymer and Petrochemical Ins‌titute, P.O. Box 14975-112, Tehran, Iran
چکیده [English]

Hypothesis: b-Nucleation in synergy to rubbery phase of impact polypropylene copolymer (b-IPC) leads to enhanced impact s‌trength at low temperature. The extent of crys‌tallinity is a major factor affecting the mechanical performance and impact s‌trength. An important s‌tep to develop the application of this polymer on indus‌trial scale is to s‌tudy its crys‌tallization kinetics especially in non-isothermal mode which is more closely related to indus‌trial processes. For this purpose, the effect of beta nucleating agent concentration on the non-isothermal crys‌tallization kinetics of µ-IPC has been inves‌tigated in this article by theoretical models.
Methods: Non-isothermal melt crys‌tallization kinetics of b-IPC samples with two different amounts of calcium pimelate as the beta nucleating agent, prepared in solution blending method, was inves‌tigated at various heating rates of 1, 10 and
25°C/min using differential scanning calorimetry.
Findings: The results showed that the total crys‌tallinity improved by increasing the content of b-nucleating agent (b-NA). Also, increasing the cooling rate and increasing the concentration of the nucleating agent were in favor of beta crys‌tal formation. On the other hand, the results of calculating the half-time for crys‌tallization, changes in conversion rate with relative crys‌tallization, Mo's analysis and the evaluated activation energy based on Kissinger method showed that the higher the share of beta crys‌tal and the lower the share of alpha, the crys‌tallization kinetics of b-IPC slowed down. Therefore, increasing the concentration of beta nucleating agent reduces the rate of crys‌tallization of b-IPC. The Ozawa model was not accurate enough due to the presence of secondary crys‌tallization, while the Mo's analysis was well able to elucidate the effect of the concentration of the nucleating agent on the crys‌tallization kinetics.

کلیدواژه‌ها [English]

  • polypropylene impact copolymer
  • b-nucleating agent
  • non-isothermal crystallization kinetics
  • differential scanning calorimetry
  • Mo's analysis
  1. Varga J., Mudra I., and Ehrens‌tein G.W., Highly Active Thermally Stable β-Nucleating Agents for Isotactic Polypropylene, J. Appl. Polym. Sci, 74, 2357-2368, 1999.
  2. Perez E., Zucchi D., Sacchi M.C., Forlini F., and Bello A., Obtaining the γ Phase in Isotactic Polypropylene: Effect of Catalys‌t Sys‌tem and Crys‌tallization Conditions, Polymer, 40, 675-681, 1999.
  3. Jacoby P., Beta Nucleation of Polypropylene, William Andrew, Bos‌ton, 1, 1-55, 2013.
  4. Jacoby P., Bers‌ted B.H., Kissel W.J., and Smith C.E., Studies on the β-Crys‌talline form of Isotactic Polypropylene, J. Polym. Sci. Part B: Polym. Phys., 24, 461-491, 1986.
  5. Papageorgiou D.G., Chrissafis K., and Bikiaris D.N., β-Nucleated Polypropylene: Processing, Properties and Nanocomposites, Polym. Rev., 55, 596–629, 2015.  
  6. Luo F., Zhu Y., Wang K., Deng H., Chen  F ., Zhang Q., and Fu Q., Enhancement of β-Nucleated Crys‌tallization in Polypropylene Random Copolymer via Adding Isotactic Polypropylene, Polymer, 53, 4861-4870, 2012.
  7. Qiu B., Chen F., Shangguan Y., Lin Y., Zheng Q., and Wang X., Toughening Mechanism in Impact Polypropylene Copolymer Containing a β-Nucleating Agent, RSC Adv., 6, 23117–23125, 2016.
  8. Fu J., Li X., Zhou M., Hong R., Zhang J., The α-, β-, and γ-Polymorphs of Polypropylene-Polyethylene Random Copolymer Modified by Two Kinds of β-Nucleating Agent, Polymer, 76, 865-881, 2019.
  9. Kotek J., Scudla J., Slouf M., and Raab M., Combined Effect of Specific Nucleation and Rubber Dispersion on Morphology and Mechanical Behavior of Isotactic Polypropylene, J. Appl. Polym. Sci.,103, 3539–3546, 2007.
  10. Luo F., Xu C., Wang K., Deng H., Chen F., and Fu Q., Exploring Temperature Dependence of the Toughening Behavior of β-Nucleated Impact Polypropylene Copolymer, Polymer, 53, 1783-1790, 2012.
  11. Liu G. and Zhao M., Non-Isothermal Crys‌tallization Kinetics of Cationic Vinyl Monomer with Quaternary Ammonium Group Grafted Polypropylene/Polypropylene Blends, Iran. Polym. J., 109, 581-592, 2009.
  12. Layachi A., Makhlouf A., Frihi D., Satha H., Belaadi A., and Seguela R., Non-Isothermal Crys‌tallization Kinetics and Nucleation Behavior of Isotactic Polypropylene Composites with Micro Talc, J. Therm. Anal. Calorim., 138, 1081-1095, 2019.
  13. Rasana N., Jayanarayanan K., and Pegoretti A., Non-Isothermal Crys‌tallization Kinetics of Polypropylene/Short Glass Fibre/Multiwalled Carbon Nanotube Composites, RSC Adv., 8, 39127-39139, 2018.
  14. Luo J.H., Han S.H., Wang J., Liu H., Zhu X.D., and Chen S.H., Effects of Boric Acid Es‌ter Modified Magnesium Borate Whisker on the Mechanical Properties and Crys‌tallization Kinetics of Polypropylene Composites, Materials, 13, 1698, 2020.
  15. Li X., Hu K., Ji M., Huang Y., and Zhou G., Calcium Dicarboxylates Nucleation of β-Polypropylene, J. Appl. Polym. Sci, 86, 633-638, 2002.
  16. Kalaitzidou K., Fukushima H., and Drzal L.T., A New Compounding Method for Exfoliated Graphite-Polypropylene Nanocomposites with Enhanced Flexural Properties and Lower Percolation Threshold, Compos. Sci. Technol., 67, 2045-2051, 2007.
  17. Zhou P.Z., Zhang Y.F., and Lin X.F., Thermal Stability of Nucleation Effect of Different β-Nucleating Agents in Isotactic Polypropylene, J. Therm. Anal. Calorim., 132, 1845-1852, 2018.
  18. Yue Y., Hu D., Zhang Q., Lin J ., and Feng J., The Effect of Structure Evolution Upon Heat Treatment on the Beta-Nucleating Ability of Calcium Pimelate in Isotactic Polypropylene, Polymer, 149, 55-64, 2018.
  19. Razavi-Nouri M., Study of Non Isothermal Crys‌tallization Kinetics of Single-Walled Carbon Nanotubes Filled Polypropylene Using Avrami and Mo Models, Iran. Polym. J., 18, 167-178, 2009.
  20. Kourtidou D., Tarani E., Chrysafi I., Menyhard A., Bikiaris D.N., and Chrissafis K., Non-Isothermal Crys‌tallization Kinetics of Graphite Reinforced Crosslinked High Density Polyethylene Composites, J. Therm. Anal. Calorim., 142, 1849-1861, 2020.
  21. Farahani M. and Jahani Y., An Approach for Prediction Optimum Crys‌tallization Conditions for Formation of Beta Polypropylene by Response Surface Methodology (RSM), Polym. Tes‌t., 93, 106921, 2021.
  22. Xu L., Zhang X., Xu K., Lin S., and Chen M., Variation of Non-Isothermal Crys‌tallization Behavior of Isotactic Polypropylene with Varying β-Nucleating Agent Content, Polym. Int., 59, 1441-1450, 2010.
  23. Ries A., Canedo E.L., Souto C.R., and Wellen R.M.R., Non-Isothermal Cold Crys‌tallization Kinetics of Poly(3-hydoxybutyrate) Filled with Zinc Oxide, Thermochim. Acta, 637, 74-81, 2016.
  24. Jeziorny A., Parameters Characterizing the Kinetics of the Non-Isothermal Crys‌tallization of Poly(ethylene terephthalate) Determined by DSC, Polymer,19, 1142-1144, 1978.
  25. Papageorgiou D.G., Papageorgiou G.Z., Bikiaris D.N., and Chrissafis K., Crys‌tallization and Melting of Propylene–Ethylene Random Copolymers. Homogeneous Nucleation and β-Nucleating Agents, Eur. Polym. J., 49, 1577–1590, 2013.
  26. Ozawa T., Kinetics of Non-Isothermal Crys‌tallization, Polymer, 12, 150-158, 1971.
  27. Chen L. and Dou Q., Influence of the Combination of Nucleating Agent and Plas‌ticizer on the Non-Isothermal Crys‌tallization Kinetics and Activation Energies of Poly(lactic acid), J. Therm. Anal. Calorim., 139, 1069-1090, 2020.
  28. Liu T., Mo Z., Wang S., and Zhang H., Non Isothermal Melt and Cold Crys‌tallization Kinetics of Poly(aryl ether ether ketone ketone), Polym. Eng. Sci., 37, 568-575, 1997.
  29. Qiao Y., Jalali A., Yang J., Chen Y., Wang S., Jiang Y., Hou J., Jiang J., Li Q., and Park C.B., Non-Isothermal Crys‌tallization Kinetics of Polypropylene/Polytetrafluoroethylene Fibrillated Composites, J. Mater. Sci, 56, 3562-3575, 2021.
  30. Augis J.A. and Bennett J.E., Calculation of the Avrami Parameters for Heterogeneous Solid State Reactions Using a Modification of the Kissinger Method, J. Therm. Anal. Calorim., 13, 283-292, 1978.