مروری بر پیشرفت‌های اخیر در جداکننده‌های بر پایه پلی‌اولفین‌ در کاربردهای باتری‌ لیتیم-یون

نوع مقاله : مروری

نویسندگان

تهران، دانشگاه تهران، پردیس علوم، دانشکده شیمی، کد پستی 1417614411

چکیده

در سال‌های اخیر، مطالعات متعددی درباره باتری‌های لیتیم-یون ثانویه برای کاربردهای گسترده شامل منبع تغذیه در وسایل الکترونیکی قابل‌حمل، وسایل نقلیه الکتریکی و مخزن ذخیره الکتریکی انجام شده است. به‌طور کلی، باتری‌های لیتیم-یون از چهار جزء شامل آند، کاتد، الکترولیت و جداکننده تشکیل شده‌اند. با وجود اینکه جداکننده‌ها در باتری‌های لیتیم-یون هیچ نقشی در واکنش‌های الکتروشیمیایی ندارند، اما به‌طور فیزیکی آند و کاتد را جدا می‌کنند، به‌طوری که وقتی جریان آزاد یون‌های لیتیم از راه الکترولیت مایع منتقل می‌شود، اتصال کوتاه الکتریکی رخ ندهد. از این‌رو، جداکننده نقش اساسی را در ایمنی و توان باتری‌های لیتیم یون دارد. در میان تعداد زیاد جداکننده‌هایی که تاکنون تولید شده‌اند، جداکننده‌های غشایی متخلخل پلی‌اولفینی شامل پلی‌اتیلن (PE) و پلی‌پروپیلن (PP)، به‌دلیل داشتن ویژگی‌های برجسته‌ای از جمله پایداری الکتروشیمیایی، استحکام مکانیکی خوب، کارایی و مقرون به‌صرفه‌بودن و از کارافتادگی گرمایی، به‌عنوان امیدوارکننده‌ترین جداکننده‌ها برای باتری‌های لیتیم-یون تجاری به‌شمار می‌آیند. با وجود این، جداکننده‌های غشایی مشکلات اساسی از جمله غیرقطبی‌بودن، انرژی سطحی کم و پایداری گرمایی ضعیف را برای ذخیره‌سازی وسایل نقلیه دارند. از این‌رو، در این بررسی انواع جداکننده‌های پلی‌‌اولفینی میکرومتخلخل استفاده‌شده در باتری‌های لیتیم-یون و روش‌های اصلاح سطح آن‌ها مرور شده‌اند. راهکارهایی همچون پیوندزنی با روش‌های مختلف، روش الهام‌گرفته از صدف و عامل‌دارکردن با نانوذرات معدنی نیز برای غلبه بر مشکلات نام‌برده به‌کار گرفته شده‌اند. نتایج پژوهش‌های بسیاری اثبات می‌کند، اگر با استفاده از روش‌ها و مواد مناسب اصلاح سطح انجام شود، خواص چشمگیری به‌وسیله جداکننده‌های پلی‌اولفینی تک‌لایه و چندلایه به‌دست خواهد آمد که می‌تواند پنجره‌ای جدیدی را به روی باتری‌های با عملکرد کارآمد بگشاید.

کلیدواژه‌ها


عنوان مقاله [English]

Recent Advances in Polyolefin-Based Separators for Li-ion Battery Applications: A Review

نویسندگان [English]

  • Ali Akbar Heidari
  • Hossein Mahdavi
  • Milad Karami
School of Chemistry, College of Science, University of Tehran, Postal Code: 1417614411, Tehran, Iran
چکیده [English]

In recent years, extensive studies have been conducted on secondary lithium-ion (Li-ion) batteries for innumerable applications, including power source for the portable electronics, electric vehicle, and electric storage reservoir. It is well-known that Li-ion batteries are made up of four different components, i.e., anode, cathode, electrolyte and separator. Even though separators play no roles in the electrochemical reactions, they physically separate the anode and cathode to avoid electrical short circuits when the free flow of Li ions transfers through the liquid electrolyte. According to the above-given statements, a separator takes a key part in the safety and the power capability of Li-ion batteries. Unil today, various separators have been introduced, among which polyolefin membrane separators have proved to be the most promising separators for commercial Li-ion batteries, arising from their outstanding properties, e.g., electrochemical stability, good mechanical strength, cost-efficiency, and thermal shutdown properties. Nevertheless, these membrane separators have faced several key drawbacks for vehicular storage, including non-polarity, low surface energy and poor thermal stability. Accordingly, the aim of this study is to review the types of polyolefin microporous separators which are widely employed in Li-ion batteries and all the intricate approaches taken for their surface modification. Several approaches including grafting by different methods, mussel-inspired technique and functionalization by inorganic nanostructures have been widely utilized to overcome the above- problems. It has been proven in the literature that outstanding properties can be provided through mono- and multilayer polyolefin separators if they are modified by proper strategies and materials, by which stat-of-the-art Li-ion batteries can be introduced..

کلیدواژه‌ها [English]

  • Li-ion battery
  • polyolefin separator
  • mono- and multilayer separators
  • surface modification techniques
  • functionalization of separators
  1. Ehsani A., Heidari A.A., and Shiri H.M., Electrochemical Pseudocapacitors Based on Ternary Nanocomposite of Conductive Polymer/Graphene/Metal Oxide: An Introduction and Review to It in Recent Studies, Rec., 19, 908-926, 2019.
  2. Kahriz P.K., Mahdavi H., Ehsani A., Heidari A.A., and Bigdeloo M., Influence of Synthesized Functionalized Reduced Graphene Oxide Aerogel with 4,4′-Methylenedianiline as Reducing Agent on Electrochemical and Pseudocapacitance Performance of Polyorthoaminophenol Electroactive Film, Acta, 354, 136736, 2020.
  3. Kowsari E., Ehsani A., Najafi M.D., Seifvand N., and Heidari A.A., Geminal Dicationic Ionic Liquid Functionalized Graphene Nanoribbon/POAP Composite Film: Synthesis, Characterization and Electrochemical Pseudocapacitance Performance, Ionics, 24, 2083-2092, 2018.
  4. Sirisinudomkit P., Iamprasertkun P., Krittayavathananon A., Pettong T., Dittanet P., and Sawangphruk M., Hybrid Energy Storage of Ni(OH)2-Coated N-Doped Graphene Aerogel//N-Doped Graphene Aerogel for the Replacement of NiCd and NiMH Batteries, Rep., 7, 1-9, 2017.
  5. Liu K., Zhou W., Zhu D., He J., Li J., Tang Z., Huang L., He B., and Chen Y., Excellent High-Rate Capability of Micron-Sized Co-Free α-Ni(OH)2 for High-Power Ni-MH Battery, Alloy. Compd., 768, 269-276, 2018.
  6. Choi J.W. and Aurbach D., Promise and Reality of Post-Lithium-Ion Batteries with High Energy Densities, Rev. Mater., 1, 1-16, 2016.
  7. Lin J., Zeng C., Lin X., Xu C., Xu X., and Luo Y., Metal–Organic Framework-Derived Hierarchical MnO/Co with Oxygen Vacancies toward Elevated-Temperature Li-Ion Battery, ACS Nano, 15, 4594-4607, 2021.
  8. Janoschka T., Martin N., Martin U., Friebe C., Morgenstern S., Hiller H., Hager M.D., and Schubert U.S., An Aqueous, Polymer-Based Redox-Flow Battery Using Non-corrosive, Safe, and Low-Cost Materials, Nature, 527, 78-81, 2015.
  9. Mahdavi H., Shahalizade T., Self-breathing Ternary Nanocomposite Based on Nitrogen-doped Graphene Aerogel/Polyaniline/Sulfur as a Cathode Material for Lithium-Sulfur (Li-S) Batteries, Ionics, 24, 43-50, 2018.
  10. Li Z., Zhang Q., Hencz L., Liu J., Kaghazchi P., Han J., Wang L., and Zhang S., Multifunctional Cation-Vacancy-Rich ZnCo2O4 Polysulfide-Blocking Layer for Ultrahigh-Loading Li-S Battery, Nano Energy, 89, 106331, 2021.
  11. Jin S.Y., Manuel J., Zhao X., Park W.H., and Ahn J.-H., Surface-Modified Polyethylene Separator via Oxygen Plasma Treatment for Lithium Ion Battery, Ind. Eng. Chem., 45, 15-21, 2017.
  12. Zhu X., Jiang X., Ai X., Yang H., and Cao Y., A Highly Thermostable Ceramic-grafted Microporous Polyethylene Separator for Safer Lithium-Ion Batteries, ACS Appl. Mater. Interfaces, 7, 24119-24126, 2015.
  13. Chombo P.V. and Laoonual Y., A Review of Safety Strategies of a Li-Ion Battery, Power Sources, 478, 228649, 2020.
  14. Manafi P., Nazockdast H., Gomari S., Manafi M.R., Sedighi S., Bertoli L., and Magagnin L., Morphology and Electrochemical Properties of a Gel Blend Polymer Electrolyte Based on PVDF-HFP/PEO Blend, J. Polym. Sci. Technol. (Persian), 34, 55-69, 2021.
  15. Liao H., Hong H., Zhang H., and Li Z., Preparation of Hydrophilic Polyethylene/Methylcellulose Blend Microporous Membranes for Separator of Lithium-Ion Batteries, Membr. Sci., 498, 147-157, 2016.
  16. Fang L.-F., Shi J.-L., Zhu B.-K., and Zhu L.-P., Facile Introduction of Polyether Chains onto Polypropylene Separators and Its Application in Lithium Ion Batteries, Membr. Sci., 448, 143-150, 2013.
  17. Pan L., Wang H., Wu C., Liao C., and Li L., Tannic-Acid-Coated Polypropylene Membrane as a Separator for Lithium-Ion Batteries, ACS Appl. Mater. Interfaces, 7, 16003-16010, 2015.
  18. Prasanna K., Kim C.-S., and Lee C.W., Effect of SiO2 Coating on Polyethylene Separator with Different Stretching Ratios for Application in Lithium Ion Batteries, Chem. Phys., 146, 545-550, 2014.
  19. Wang Z., Hu M., Yu X., Li H., and Wang Q., and Li L., Uniform and Porous Nacre-Like Cellulose Nanofibrils/Nanoclay Composite Membrane as Separator for Highly Safe and Advanced Li-Ion Battery, Membr. Sci., 637, 119622, 2021.
  20. Xiang Y., Li J., Lei J., Liu D., Xie Z., Qu D., Li K., Deng T., and Tang H., Advanced Separators for Lithium-Ion and Lithium-Sulfur Batteries: A Review of Recent Progress, ChemSusChem, 9, 3023-3039, 2016.
  21. Wang L., Liu Q., Xu S., Du Y., and Ren X., Research and Development on the Separators of Li-Ion Batteries, IOP Conference Series: Earth and Environmental Science, IOP Publishing, 012011, 2021.
  22. Mahdavi H. and Sahraei R., Synthesis and Application of Hyperbranched Polyester-Grafted Polyethylene (HBPE-g-PE) Containing Palladium Nanoparticles as Efficient Nanocatalyst, Let., 146, 977-990, 2016.
  23. Mahdavi H. and Nook M.E., Structure and Morphology of a Commercial High-Impact Polypropylene in-Reactor Alloy Synthesized Using a Spherical Ziegler–Natta Catalyst, Int., 59, 1701-1708, 2010.
  24. Mahdavi H. and Enayati Nook M., Commercial, High-Impact Polypropylenes: Composition and Chain Structure as Revealed by Temperature-Gradient Extraction Fractionation, Appl. Polym. Sci., 125, 1606-1615, 2012.
  25. Mahdavi H. and Nook M.E., Characterization and Microstructure Study of Low-Density Polyethylene by Fourier Transform Infrared Spectroscopy and Temperature Rising Elution Fractionation, Appl. Polym. Sci., 109, 3492-3501, 2008.
  26. Heidari A.A. and Mahdavi H., Polyethylene Coated with MnO2 Nanoparticles as Thin Film Composite Membranes for Organic Solvent Nanofiltration, ACS Appl. Nano Mater., 4, 2768-2782, 2021.
  27. Mun J., Yim T., Kwon Y.G., and Kim K.J., Self-assembled Nano-silica-Embedded Polyethylene Separator with Outstanding Physicochemical and Thermal Properties for Advanced Sodium Ion Batteries, Eng. J., 405, 125844, 2021.
  28. Takeda S., Saito Y., Mukai T., Senoh H., Kaneko I., and Yoshitake H., Effect of the Stretching Process of Polyethylene Separators on Rate Capability of Lithium-Ion Batteries, Phys. Chem. C, 125, 12496-12503, 2021.
  29. Lee H., Yanilmaz M., Toprakci O., Fu K., and Zhang X., A Review of Recent Developments in Membrane Separators for Rechargeable Lithium-Ion Batteries, Energy Environ. Sci., 7, 3857-3886, 2014.
  30. Deimede V. and Elmasides C., Separators for Lithium-Ion Batteries: A Review on the Production Processes and Recent Developments, Energy Technol., 3, 453-468, 2015.
  31. Love C.T., Thermomechanical Analysis and Durability of Commercial Micro-Porous Polymer Li-Ion Battery Separators, Power Sources, 196, 2905-2912, 2011.
  32. Djian D., Alloin F., Martinet S., Lignier H., and Sanchez J.-Y., Lithium-Ion Batteries with High Charge Rate Capacity: Influence of the Porous Separator, Power Sources, 172, 416-421, 2007.
  33. Ihm D., Noh J., and Kim J., Effect of Polymer Blending and Drawing Conditions on Properties of Polyethylene Separator Prepared for Li-Ion Secondary Battery, Power Sources, 109, 388-393, 2002.
  34. Gu Q.-Q., Xue H.-J., Li Z.-W., Song J.-C., and Sun Z.-Y., High-Performance Polyethylene Separators for Lithium-Ion Batteries Modified by Phenolic Resin, Power Sources, 483, 229155, 2021.
  35. Shi C., Zhang P., Huang S., He X., Yang P., Wu D., Sun D., and Zhao J., Functional Separator Consisted of Polyimide Nonwoven Fabrics and Polyethylene Coating Layer for Lithium-Ion Batteries, Power Sources, 298, 158-165, 2015.
  36. Zhang S.S., A Review on the Separators of Liquid Electrolyte Li-Ion Batteries, Power Sources, 164, 351-364, 2007.
  37. Zaghib K., Dubé J., Dallaire A., Galoustov K., Guerfi A., Ramanathan M., Benmayza A., Prakash J., Mauger A., and Julien C.M., Lithium-Ion Cell Components and Their Effect on High-Power Battery Safety, Lithium-Ion Batteries, Advances and Applications, 437-460, 2014.
  38. Callahan R.W., Call R.W., Harleson K.J., and Yu T.-H., Battery Separators with Reduced Splitting Propensity, Google Patents, 2003.
  39. Hsu W.-D., Yang P.-W., Chen H.-Y., Wu P.-H., Wu P.-C., Hu C.-W., Saravanan L., Liao Y.-F., Su Y.-T., and Bhalothia D., Preferential Lattice Expansion of Polypropylene in a Trilayer Polypropylene/Polyethylene/Polypropylene Microporous Separator in Li-Ion Batteries, Rep., 11, 1-15, 2021.
  40. Liu K., Liu Y., Lin D., Pei A., and Cui Y., Materials for Lithium-Ion Battery Safety, Adv., 4, eaas9820, 2018.
  41. Huang Z., Chen Y., Han Q., Su M., Liu Y., Wang S., and Wang H., Vapor-Induced Phase Inversion of Poly(m-phenylene isophthalamide) Modified Polyethylene Separator for High-Performance Lithium-Ion Batteries, Eng. J., 429, 132429, 2022.
  42. Xu K., Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries, Rev., 104, 4303-4418, 2004.
  43. Kim J.Y., Lee Y., and Lim D.Y., Plasma-Modified Polyethylene Membrane as a Separator for Lithium-Ion Polymer Battery, Acta, 54, 3714-3719, 2009.
  44. Scrosati B., Hassoun J., and Sun Y.-K., Lithium-Ion Batteries. A Look into the Future, Energy Environ. Sci., 4, 3287-3295, 2011.
  45. Shi C., Zhang P., Chen L., Yang P., and Zhao J., Effect of a Thin Ceramic-Coating Layer on Thermal and Electrochemical Properties of Polyethylene Separator for Lithium-Ion Batteries, Power Sources, 270, 547-553, 2014.
  46. Jeong H.-S. and Lee S.-Y., Closely Packed SiO2 Nanoparticles/Poly(vinylidene fluoride-hexafluoropropylene) Layers-Coated Polyethylene Separators for Lithium-Ion Batteries, Power Sources, 196, 6716-6722, 2011.
  47. Lee Y., Lee H., Lee T., Ryou M.-H., Lee Y.M., Synergistic Thermal Stabilization of Ceramic/Co-polyimide Coated Polypropylene Separators for Lithium-Ion Batteries, Power Sources, 294, 537-544, 2015.
  48. Zhu X., Jiang X., Ai X., Yang H., and Cao Y., TiO2 Ceramic-grafted Polyethylene Separators for Enhanced Thermostability and Electrochemical Performance of Lithium-Ion Batteries, Membr. Sci., 504, 97-103, 2016.
  49. Kim K.J., Kim J.-H., Park M.-S., Kwon H.K., Kim H., Kim Y.-J., Enhancement of Electrochemical and Thermal Properties of Polyethylene Separators Coated with Polyvinylidene Fluoride–Hexafluoropropylene Co-polymer for Li-Ion Batteries, Power Sources, 198, 298-302, 2012.
  50. Gwon S.-J., Choi J.-H., Sohn J.-Y., An S.-J., Ihm Y.-E., and Nho Y.-C., Radiation Grafting of Methyl Methacrylate onto Polyethylene Separators for Lithium Secondary Batteries, Instrum. Methods Phys. Res. B, 266, 3387-3391, 2008.
  51. Gwon S.-J., Choi J.-H., Sohn J.-Y., Ihm Y.-E., and Nho Y.-C., Preparation of a New Micro-Porous Poly(methyl methacrylate)-grafted Polyethylene Separator for High Performance Li Secondary Battery, Nuclear Instruments and Instrum. Methods Phys. Res. B, 267, 3309-3313, 2009.
  52. Li S. and Gao K., The Study on Methyl Methacrylate Graft-Copolymerized Composite Separator Prepared by Pre-irradiation Method for Li-Ion Batteries, Coat. Technol., 204, 2822-2828, 2010.
  53. Gancarz I., Bryjak M., Kunicki J., and Ciszewski A., Microwave Plasma-Initiated Grafting of Acrylic Acid on Celgard 2500 Membrane to Prepare Alkaline Battery Separators-Characteristics of Process and Product, Appl. Polym. Sci., 116, 868-875, 2010.
  54. Basarir F., Choi E., Moon S., Song K., and Yoon T., Electrochemical Properties of PP Membranes with Plasma Polymer Coatings of Acrylic Acid, Membr. Sci., 260, 66-74, 2005.
  55. Ko J., Min B., Kim D.-W., Ryu K., Kim K., Lee Y., and Chang S., Thin-Film Type Li-Ion Battery, Using a Polyethylene Separator Grafted with Glycidyl Methacrylate, Acta, 50, 367-370, 2004.
  56. Ghasemzadeh Mohammadi H., Jamshidbeigi S., and Dargahi M., Nanomagnetic Hydrogels Based on Carboxymethylcellulose/Diatomaceous Earth Grafted with Acrylamide for Adsorption of Cationic Crystal Violet Dye, J. Polym. Sci. Technol., (Persian), 31, 171-185, 2018.
  57. Chung Y., Yoo S., and Kim C., Enhancement of Meltdown Temperature of the Polyethylene Lithium-Ion Battery Separator via Surface Coating with Polymers Having High Thermal Resistance, Eng. Chem. Res., 48, 4346-4351, 2009.
  58. Jaymand M., GhasemiKarajabad S., Ghaeminia H., and Abbasian M., Synthesis and Characterization of Copolymer Poly(propylene-co-styrene) Grafted-Multiple-walled Carbon Nanotubes by Nitroxide-mediated Living Radical Polymerization and Solution Intercalation Method, J. Polym. Sci. Technol. (Persian), 33, 401-417, 2020.
  59. Lee J.Y., Lee Y.M., Bhattacharya B., Nho Y.-C., and Park J.-K., Separator Grafted with Siloxane by Electron Beam Irradiation for Lithium Secondary Batteries, Acta, 54, 4312-4315, 2009.
  60. Gao K., Hu X., Yi T., and Dai C., PE-g-MMA Polymer Electrolyte Membrane for Lithium Polymer Battery, Acta, 52, 443-449, 2006.
  61. Kwon S.J., Park S.-H., Park M.S., Lee J.S., and Lee J.-H., Highly Permeable and Mechanically Durable Forward Osmosis Membranes Prepared Using Polyethylene Lithium Ion Battery Separators, Membr. Sci., 544, 213-220, 2017.
  62. Han M., Kim D.-W., and Kim Y.-C., Charged Polymer-Coated Separators by Atmospheric Plasma-Induced Grafting for Lithium-Ion Batteries, ACS Appl. Mater. Interfaces, 8, 26073-26081, 2016.
  63. Lukitowati F. and Indrani D.J., Water Absorption of Chitosan, Collagen and Chitosan/Collagen Blend Membranes Exposed to Gamma-Ray Irradiation, J. Pharm. Sci., 14, 57-66, 2018.
  64. Mahdavi H. and Heidari A.A., Chelated Palladium Nanoparticles on the Surface of Plasma-Treated Polyethersulfone Membrane for an Efficient Catalytic Reduction of p-Nitrophenol, Adv. Technol., 29, 989-1001, 2018.
  65. Ciszewski A., Gancarz I., Kunicki J., and Bryjak M., Plasma-Modified Polypropylene Membranes as Separators in High-Power Alkaline Batteries, Coat. Technol., 201, 3676-3684, 2006.
  66. Juang R.-S., Liang C.-H., Ma W.-C., and Tsai C.-Y., Huang C., Low-Pressure Ethane/Nitrogen Gas Mixture Plasma Surface Modification Effect on the Wetting and Electrochemical Performance of Polymeric Separator for Lithium-Ion Batteries, Taiwan Inst. Chem. Eng., 45, 3046-3051, 2014.
  67. Gancarz I., Poźniak G., Bryjak M., and Tylus W., Modification of Polysulfone Membranes 5. Effect of n-Butylamine and Allylamine Plasma, Polym. J., 38, 1937-1946, 2002.
  68. Gancarz I., Poźniak G., Bryjak M., Modification of Polysulfone Membranes: 3. Effect of Nitrogen Plasma, Polym. J., 36, 1563-1569, 2000.
  69. Wavhal D.S. and Fisher E.R., Hydrophilic Modification of Polyethersulfone Membranes by Low Temperature Plasma-Induced Graft Polymerization, Membr. Sci., 209, 255-269, 2002.
  70. Van der Bruggen B., Chemical Modification of Polyethersulfone Nanofiltration Membranes: A Review, Appl. Polym. Sci., 114, 630-642, 2009.
  71. Haddow D.B., France R.M., Short R.D., Bradley J.W., and Barton D., A Mass Spectrometric and Ion Energy Study of the Continuous Wave Plasma Polymerization of Acrylic Acid, Langmuir, 16, 5654-566, 2000.
  72. Soriano-Corral F., Calva-Nava L., Hernández-Gámez J., Hernández-Hernández E., González-Morones P., Ávila-Orta C., Soria-Arguello G., Fonseca-Florido H.A., Covarrubias-Gordillo C.A., and Díaz de León-Gómez R.E., Influence of Ethylene Plasma Treatment of Agave Fiber on the Cellular Morphology and Compressive Properties of Low-Density Polyethylene/Ethylene Vinyl Acetate Copolymer/Agave Fiber Composite Foams, J. Polym. Sci., 2021, 2021.
  73. Widodo M., El-Shafei A., and Hauser P.J., Surface Nanostructuring of Kevlar Fibers by Atmospheric Pressure Plasma-Induced Graft Polymerization for Multifunctional Protective Cothing, Polym. Sci. Part B: Polym. Phys., 50, 1165-1172, 2012.
  74. Tommalieh M., Gamma Radiation Assisted Modification on Electrical Properties of Polyvinyl Pyrrolidone/Polyethylene Oxide Blend doped by Copper Oxide Nanoparticles, Phys. Chem., 179, 109236, 2021.
  75. Sheng L., Zhang Y., Xie X., Wu H., Yang L., Gao X., Bai Y., Dong H., Liu G., and Wang T., Polyethylene Separator Activated by γ-Ray Irradiation for Improving Lithium-Based Battery Performance, Mater. Sci., 1-11, 2021.
  76. Nasef M.M., Suppiah R.R., and Dahlan K.Z.M., Preparation of Polymer Electrolyte Membranes for Lithium Batteries by Radiation-Induced Graft Copolymerization, Solid State Ionics, 171, 243-249, 2004.
  77. Nasef M.M., Saidi H., and Dahlan K.Z.M., Single-Step Radiation Induced Grafting for Preparation of Proton Exchange Membranes for Fuel Cell, Membr. Sci., 339, 115-119, 2009.
  78. Nasef M., Saidi H., and Dahlan K.Z.M., Kinetic Investigations
    of Graft Copolymerization of Sodium Styrene Sulfonate onto Electron Beam Irradiated Poly(vinylidene fluoride) Films, Rad. Phys. Chem., 80, 66-75, 2011.
  79. Choi J.-H., Gwon S.-J., Shon J.-Y., Jung C.-H., Ihm Y.-E., Lim Y.-M., and Nho Y.-C., Preparation of Polystyrene-Grafted Poly(vinylidene fluoride) Membranes for Lithium Secondary Batteries, Ind. Eng. Chem., 14, 116-119, 2008.
  80. Brack H.-P., Padeste C., Slaski M., Alkan S., Solak H.H., Preparation of Micro- and Nanopatterns of Polymer Chains Grafted onto Flexible Polymer Substrates, Am. Chem. Soc., 126, 1004-1005, 2004.
  81. Gwon S.-J., Choi J.-H., Sohn J.-Y., Lim Y.-M., Nho Y.-C., and Ihm Y.-E., Battery Performance of PMMA-Grafted PE Separators Prepared by Pre-irradiation Grafting Technique, Ind. Eng. Chem., 15, 748-751, 2009.
  82. Hou J., Park I.K., Cha W.J., and Lee C.H., A Gel Polymer Electrolyte Reinforced Membrane for Lithium-Ion Batteries via the Simultaneous-Irradiation of the Electron Beam, Membranes, 11, 219, 2021.
  83. Cai B.-R., Cao J.-H., Liang W.-H., Yang L.-Y., Liang T., and Wu D.-Y., Ultraviolet-Cured Al2O3-Polyethylene Terephthalate/Polyvinylidene Fluoride Composite Separator with Asymmetric Design and Its Performance in Lithium Batteries, ACS Appl. Energy Mater., 4, 5293-5303, 2021.
  84. Hu M.-X., Yang Q., and Xu Z.-K., Enhancing the Hydrophilicity of Polypropylene Microporous Membranes by the Grafting of 2-Hydroxyethyl Methacrylate via a Synergistic Effect of Photoinitiators, Membr. Sci., 285, 196-205, 2006.
  85. Yu H., Cao Y., Kang G., Liu J., Li M., and Yuan Q., Enhancing Antifouling Property of Polysulfone Ultrafiltration Membrane by Grafting Zwitterionic Copolymer via UV-Initiated Polymerization, Membr. Sci., 342, 6-13, 2009.
  86. Lv X., Li H., Zhang Z., Chang H., Jiang L., and Liu H., UV Grafting Modification of Polyethylene Separator for Li-Ion Battery, Proc., 25, 227-232, 2012.
  87. Fritz J.L. and Owen M.J., Hydrophobic Recovery of Plasma-treated Polydimethylsiloxane, Adhesion, 54, 33-45, 1995.
  88. Lee H., Dellatore S.M., Miller W.M., and Messersmith P.B., Mussel-Inspired Surface Chemistry for Multifunctional Coatings, Science, 318, 426-430, 2007.
  89. Kang S.M., Ryou M.-H., Choi J.W., and Lee H., Mussel-and Diatom-Inspired Silica Coating on Separators Yields Improved Power and Safety in Li-Ion Batteries, Mater., 24, 3481-3485, 2012.
  90. Xu Q., Kong Q., Liu Z., Zhang J., Wang X., Liu R., Yue L., and Cui G., Polydopamine-Coated Cellulose Microfibrillated Membrane as High Performance Lithium-Ion Battery Separator, RSC Adv., 4, 7845-7850, 2014.
  91. Wei H., Ren J., Han B., Xu L., Han L., and Jia L., Stability of Polydopamine and Poly(DOPA) Melanin-Like Films on the Surface of Polymer Membranes under Strongly Acidic and Alkaline Conditions, Colloid Surf. B: Biointerfaces, 110, 22-28, 2013.
  92. Wang R., Feng D., Chen T., Chen S., and Liu Y., Mussel-Inspired Polydopamine Ttreated Si/C Electrode as High-Performance Anode for Lithium-Ion Batteries, Alloy Compd., 825, 154081, 2020.
  93. Yang H.-C., Luo J., Lv Y., Shen P., and Xu Z.-K., Surface Engineering of Polymer Membranes via Mussel-Inspired Chemistry, Membr. Sci., 483, 42-59, 2015.
  94. Heidari A.A. and Mahdavi H., Thin Film Composite Solvent Resistant Nanofiltration Membrane via Interfacial Polymerization on an Engineered Polyethylene Membrane Support Coated with Polydopamine, Membr. Sci., 634, 119406, 2021.
  95. Zhang K., Xiao W., Li X., Liu J., and Yan C., Highly Thermostable Expanded Polytetrafluoroethylene Separator with Mussel-Inspired Silica Coating for Advanced Li-Ion Batteries, Power Sources, 468, 228403, 2020.
  96. Dreyer D.R., Miller D.J., Freeman B.D., Paul D.R., and Bielawski C.W., Elucidating the Structure of Poly(dopamine), Langmuir, 28, 6428-6435, 2012.
  97. Liebscher J., Mrówczyński R., Scheidt H.A., Filip C., Hădade N.D., Turcu R., Bende A., and Beck S., Structure of Polydopamine: A Never-Ending Story?, Langmuir, 29, 10539-10548, 2013.
  98. Ye Q., Zhou F., and Liu W., Bioinspired Catecholic Chemistry for Surface Modification, Soc. Rev., 40, 4244-4258, 2011.
  99. Leng C., Liu Y., Jenkins C., Meredith H., Wilker J.J., and Chen Z., Interfacial Structure of a DOPA-Inspired Adhesive Polymer Studied by Sum Frequency Generation Vibrational Spectroscopy, Langmuir, 29, 6659-6664, 2013.
  100. Yu J., Kan Y., Rapp M., Danner E., Wei W., Das S., Miller D.R., Chen Y., Waite J.H., and Israelachvili J.N., Adaptive Hydrophobic and Hydrophilic Interactions of Mussel Foot Proteins with Organic Thin Films, Nat. Ac. Sci., 110, 15680-15685, 2013.
  101. Jiang J., Zhu L., Zhu L., Zhu B., and Xu Y., Surface Characteristics of a Self-Polymerized Dopamine Coating Deposited on Hydrophobic Polymer Films, Langmuir, 27, 14180-14187, 2011.
  102. Lu Q., Danner E., Waite J.H., Israelachvili J.N., Zeng H., and Hwang D.S., Adhesion of Mussel Foot Proteins to Different Substrate Surfaces, Royal Soc. Interface, 10, 20120759, 2013.
  103. Kang S.M., Hwang N.S., Yeom J., Park S.Y., Messersmith P.B., Choi I.S., Langer R., Anderson D.G., and Lee H., One-step Multipurpose Surface Functionalization by Adhesive Catecholamine, Funct. Mater., 22, 2949-2955, 2012.
  104. Muchtar S., Wahab M.Y., Mulyati S., Arahman N., and Riza M., Superior Fouling Resistant PVDF Membrane with Enhanced Filtration Performance Fabricated by Combined Blending and the Self-Polymerization Approach of Dopamine, Water Process Eng., 28, 293-299, 2019.
  105. Lee H., Rho J., and Messersmith P.B., Facile Conjugation of Biomolecules onto Surfaces via Mussel Adhesive Protein Inspired Coatings, Mater., 21, 431-434, 2009.
  106. Della Vecchia N.F., Avolio R., Alfè M., Errico M.E., Napolitano A., and d’Ischia M., Building-Block Diversity in Polydopamine Underpins a Multifunctional Eumelanin-Type Platform Tunable through a Quinone Control Point, Funct. Mater., 23, 1331-1340, 2013.
  107. Kang S.M., Park S., Kim D., Park S.Y., Ruoff R.S., and Lee H., Simultaneous Reduction and Surface Functionalization of Graphene Oxide by Mussel-Inspired Chemistry, Funct. Mater., 21, 108-112, 2011.
  108. Guo L., Liu Q., Li G., Shi J., Liu J., Wang T., and Jiang G., A Mussel-Inspired Polydopamine Coating as a Versatile Platform for the In Situ Synthesis of Graphene-Based Nanocomposites, Nanoscale, 4, 5864-5867, 2012.
  109. Ryu J., Ku S.H., Lee H., and Park C.B., Mussel-Inspired Polydopamine Coating as a Universal Route to Hydroxyapatite Crystallization, Funct. Mater., 20, 2132-2139, 2010.
  110. Xiang Y., Zhu W., Qiu W., Guo W., Lei J., Liu D., Qu D., Xie Z., Tang H., and Li J., SnO2 Functionalized Polyethylene Separator with Enhanced Thermal Stability for High Performance Lithium Ion Battery, ChemistrySelect, 3, 911-916, 2018.
  111. Zareei F., Bandehali S., Ebrahimi M., and Hosseini S.M., Fabrication and Investigation of Separation Performance and Antifouling Properties of Mixed Matrix PES-Based Nanofiltration Membrane Containing Cobalt Ferrite Nanoparticles, J. Polym. Sci. Technol. (Persian), 33, 385-400, 2020.
  112. Wang Z., Guo F., Chen C., Shi L., Yuan S., Sun L., and Zhu J., Self-assembly of PEI/SiO2 on Polyethylene Separators for Li-Ion Batteries with Enhanced Rate Capability, ACS Appl. Mater. Interface, 7, 3314-3322, 2015.
  113. Xu W., Wang Z., Shi L., Ma Y., Yuan S., Sun L., Zhao Y., Zhang M., and Zhu J., Layer-by-Layer Deposition of Organic-Inorganic Hybrid Multilayer on Microporous Polyethylene Separator to Enhance the Electrochemical Performance of Lithium-Ion Battery, ACS Appl. Mater. Interface, 7, 20678-20686, 2015.
  114. Na W., Koh K.H., Lee A.S., Cho S., Ok B., Hwang S.-W., Lee J.H., and Koo C.M., Binder-less Chemical Grafting of SiO2 Nanoparticles onto Polyethylene Separators for Lithium-Ion Batteries, Membr. Sci., 573, 621-627, 2019.
  115. Fu D., Luan B., Argue S., Bureau M.N., and Davidson I.J., Nano SiO2 Particle Formation and Deposition on Polypropylene Separators for Lithium-Ion Batteries, Power Sources, 206, 325-333, 2012.
  116. Wang H., Wu J., Cai C., Guo J., Fan H., Zhu C., Dong H., Zhao N., and Xu J., Mussel Inspired Modification of Polypropylene Separators by Catechol/Polyamine for Li-Ion Batteries, ACS Appl. Mater. Interface, 6, 5602-5608, 2014.
  117. Dai J., Shi C., Li C., Shen X., Peng L., Wu D., Sun D., Zhang P., and Zhao J., A Rational Design of Separator with Substantially Enhanced Thermal Features for Lithium-Ion Batteries by the Polydopamine–Ceramic Composite Modification of Polyolefin Membranes, Energy Environ. Sci., 9, 3252-3261, 2016.