نانوکامپوزیت زیست‌پلاستیک بر پایه پلی‌بوتیلن سوکسینات آدیپات - سلولوزنانوبلوری اصلاح‌شده با آمینوسیلان: خواص ساختاری، گرمایی و فیزیکی

نوع مقاله : پژوهشی

نویسندگان

1 هرمزگان، بندرعباس، دانشگاه هرمزگان، دانشکده فنی و مهندسی، گروه مهندسی شیمی، صندوق پستی 3995

2 هرمزگان، بندرعباس، دانشگاه هرمزگان، دانشکده فنی و مهندسی، گروه مکانیک، ساخت تولید، صندوق پستی 3995

چکیده

فرضیه: سلولوز نانوبلوری به‌دلیل زیست‌تخریب‌پذیری، تجدیدپذیری و خواص مکانیکی عالی به‌عنوان پرکننده در زیست‌پلاسیتک‌ها بسیار مورد توجه‌ است. پراکنش خوب سلولوز نانوبلوری عامل اساسی در تعیین خواص افزایش‌یافته نانوکامپوزیت‌های زیست‌پلاستیک سلولوز نانوبلوری است. از طرفی، اصلاح سطح سلولوز نانوبلوری با استفاده از آمینوسیلان‌ها می‌تواند پراکنش آن را در ماتریس پلیمری بهبود بخشد.
روش‌ها: سطح سلولوز نانوبلوری با ترکیب سیلانی N-(2-آمینواتیل)-3-آمینوپروپیل‌تری‌متوکسی‌سیلان، به‌منظور بهبود میل ترکیبی آن به پلی‌‌بوتیلن سوکسینات آدیپات اصلاح‌ شد. نمونه‌های نانوکامپوزیتی پلی‌بوتیلن‌ سوکسینات آدیپات (PBSA) دارای مقادیر مختلف 0، 0.1 0.3، 0.5، 1 و 2phr سلولوز نانوبلوری اصلاح‌شده با روش اختلاط محلولی تهیه شدند. خواص ساختاری، گرمایی و فیزیکی نمونه‌های تهیه‌شده با آزمون‌های طیف‌سنجی زیرقرمز تبدیل فوریه (FTIR)، میکروسکوپی الکترونی پویشی (SEM)، گرماوزن‌سنجی (TGA)، گرماسنجی پویشی تفاضلی (DSC) و جذب آب  شناسایی شد.
یافته‌ها: اصلاح شیمایی سطح سلولوز نانوبلوری با آزمون‌های FTIR ،TGA و EDX، تأیید شد. اندازه‌گیری‌های گران‌روکشسانی خطی نشان داد، واردکردن سلولوز نانوبلوری در PBSA به رفتار غیرپایانی و افزایش گران‌رَوی در محدوده بسامدهای کم منجر شد که در بارگذاری‌های زیاد سلولوز نانوبلوری مشخص می‌شود. افزایش تمایل نانوذره اصلاح‌شده به PBSA به ایجاد برهم‌کنش‌های هیدرودینامیکی بین پرکننده-ماتریس و تشکیل ساختار سه‌بعدی در ماتریس پلیمر منجر شد. عکس‌های SEM، پراکنش خوب نانوذره اصلاح‌شده را در ماتریس پلیمر نشان داد. نتایج TGA نشان داد، پایداری گرمایی PBSA با سلولوز نانوبلوری اصلاح‌شده با سیلان افزایش یافت. این را می‌توان به برهم‌کنش ایجا‌دشده بین اجزای نانوکامپوزیت نسبت داد که به انرژی بیشتر برای تخریب گرمایی نیاز دارند. نتایج DSC نیز نشان داد، وجود نانوبلورهای سلولوزی به افزایش دمای بلورش در پلی‌بوتیلن سوکسینات دارای نانوذرات اصلاح‌شده منجر می‌شود. جذب آب در نمونه‌ها با زمان، تا رسیدن به حد تعادلی، افزایش یافت. افزایش مقدار نانوذره در ماتریس پلیمر باعث افزایش جذب آب شد.

کلیدواژه‌ها


عنوان مقاله [English]

Bioplastic Nanocomposites Based on Polybutylene Succinate Adipate (PBSA)/Aminosilane Modified Nonocrystalline Cellulose: Structural, Thermal and Physical Properties

نویسندگان [English]

  • Amin Hosseinipour 1
  • Mehdi Haji Abdolrasouli 1
  • Mohammad Ali Mirzai 2
1 Faculty of chemical engineering, Department of oil and gas Engineering, University of Hormozgan, Bandarrabbas, Iran.
2 Faculty of mechanical engineering, Department of Engineering, University of Hormozgan, Bandarrabbas, Iran.
چکیده [English]

Hypothesis: Nanocrystalline cellulose (NCC) has received much attention to be used as nanofiller in bioplastics due to its biodegradability, renewability and fantastic mechanical properties. The well distribution of NCC is a key factor in determining the enhanced properties of bioplastics/NCC nanocomposites. Surface modification of NCC using aminosilanes can improve its dispersion in a polymer matrix.
Methods: N-(2-Aminoethyl)-3-aminopropyltrimethoxysilane was used for surface modification of nanocrystalline cellulose (NCC) to improve its affinity to polybutylene succinate adipate (PBSA). PBSA-based nanocomposites, containing 0, 0.1, 0.3, 0.5, 1 and 2 phr modified, NCC were prepared by solution mixing. The structural, thermal and physical properties of the prepared samples were characterized using FTIR, RMS, SEM, TGA, DSC and water absorption techniques.
Findings: The chemical modification of NCC was confirmed by FTIR, TGA and EDX. Linear viscoelastic measurements show that the incorporation of NCC in PBSA resulted in a non-terminal behavior and viscosity up-turn in the low frequency range, which are pronounced in high loadings of NCCs. The enhanced affinity of NCC toward PBSA, obtained by surface modification, resulted in hydrodynamic interactions between them, leading to the formation of a 3D network structure in the matrix. The SEM results showed well distribution of modified NCC in the PBSA matrix. The TGA results showed that the thermal stability of PBSA increases in the presence of silane-modified NCC. This can be attributed to the interactions formed between the components of nanocomposite, needing higher energy for thermal degradation. Study on DCS results indicated that the crystallization temperature of the nanocomposites containing modified NCC increases as a consequence of well distributed modified NCC. The water absorption results demonstrated that the water uptake of the samples containing modified NCC increases as compared to virgin PBSA...

کلیدواژه‌ها [English]

  • Poly butylene succinate adipate
  • Nanocrystalline cellulose
  • Surface modification
  • Melt viscoelastic and thermal properties
  • Water absorption
  1. Herrera N., Salaberria A.M., Mathew A.P., and Oksman K., Plasticized Polylactic Acid Nanocomposite Films with Cellulose and Chitin Nanocrystals Prepared Using Extrusion and Compression Molding with Two Cooling Rates: Effects on Mechanical, Thermal and Optical Properties, A: Appl. Sci. Manuf., 83, 89-97, 2016.
  2. Wang S., Lu A., and Zhang L., Recent Advances in Regenerated Cellulose Materials, Polym. Sci., 53, 169-206, 2016.
  3. Yahyavi M., Khazaeian A., and Mashkour M., Studying the Properties of Polyvinyl Alcohol/Cellulose Nanofiber/Hydroxyapatite Hybrid Nanocomposite, J. Polym. Sci. Technol. (Persian), 28, 91-99, 2015.
  4. Lin N. and Dufresne A., Physical and/or Chemical Compatibilization of Extruded Cellulose Nanocrystal Reinforced Polystyrene Nanocomposites, Macromolecules, 46, 5570-5583, 2013.
  5. Azzam F., Galliot M., Putaux J.-L., Heux L., and Jean B., Surface Peeling of Cellulose Nanocrystals Resulting from Periodate Oxidation and Reductive Amination with Water-Soluble Polymers, Cellulose, 22, 3701-3714, 2015.
  6. Yin Y., Tian X., Jiang X., Wang H., and Gao W., Modification of Cellulose Nanocrystal via SI-ATRP of Styrene and the Mechanism of Its Reinforcement of Polymethylmethacrylate, Polym., 142, 206-212, 2016.
  7. Kaboorani A. and Riedl B., Surface Modification of Cellulose Nanocrystals (CNC) by a Cationic Surfactant, Crops Prod., 65, 45-55, 2015.
  8. Habibi Y., Lucia L.A., and Rojas O.J., Cellulose Nanocrystals: Chemistry, Self-Assembly, and Applications, Rev., 110, 3479-3500, 2010.
  9. Sarul D.S., Arslan D., Vatansever E., Kahraman Y., Durmus A., Salehiyan R., and Nofar M., Effect of Mixing Strategy on the Structure-Properties of the PLA/PBAT Blends Incorporated with CNC, Renew. Mater., 10, 149-164, 2022.
  10. Santana Pérez O.O. and Maspoch Rulduà M., Mechanical Behaviour of Poly(lactic acid)/Cellulose Nanocrystal Nanocomposites: A Comparative Study between Conventional Tensile test and Small Punch Test, Express Polym. Lett., 14, 1127-1136, 2020.
  11. Bellani C.F., Pollet E., Hebraud A., Pereira F.V., Schlatter G., Avérous L., Bretas R.E., and Branciforti M.C., Morphological, Thermal, and Mechanical Properties of Poly(ε-caprolactone)/Poly(ε-caprolactone)-grafted-Cellulose Nanocrystals Mats Produced by Electrospinning, Appl. Polym. Sci., 133, 2016.
  12. Kim T., Jeon H., Jegal J., Kim J. H., Yang H., Park J., Oh D. X., and Hwang S.Y., Trans Crystallization Behavior and Strong Reinforcement Effect of Cellulose Nanocrystals on Reinforced Poly(butylene succinate) Nanocomposites, RSC Adv., 8, 15389-15398, 2018.
  13. Martínez-Sanz M., Vicente A. A., Gontard N., Lopez-Rubio A., and Lagaron J. M., On the Extraction of Cellulose Nanowhiskers from Food By-products and Their Comparative Reinforcing Effect on a Polyhydroxybutyrate-co-Valerate Polymer, Cellulose, 22, 535-551, 2015.
  14. Khoshkava V. and Kamal M.R., Effect of Cellulose Nanocrystals (CNC) Particle Morphology on Dispersion and Rheological and Mechanical Properties of Polypropylene/CNC Nanocomposites, Phys. Chem., 6, 8146-8157, 2014.
  15. Ferreira F.V., Pinheiro I.F., Gouveia R.F., Thim G.P., and Lona L.M.F., Functionalized Cellulose Nanocrystals as Reinforcement in Biodegradable Polymer Nanocomposites, Compos., 39, E9-E29, 2018.
  16. Karkhanis S.S., Stark N.M., Sabo R.C., and Matuana L.M., Water Vapor and Oxygen Barrier Properties of Extrusion-Blown Poly(lactic acid)/Cellulose Nanocrystals Nanocomposite Films, A: Appl. Sci. Manuf., 114, 204-211, 2018.
  17. Tummala G.K., Rojas R., and Mihranyan A., Poly(vinyl alcohol) Hydrogels Reinforced with Nanocellulose for Ophthalmic Applications: General Characteristics and Optical Properties, Phys. Chem., 120, 13094-13101, 2016.
  18. Rueda L., Saralegui A., Fernández d’Arlas B., Zhou Q., Berglund L.A., Corcuera M.A., Mondragon I., and Eceiza A., Cellulose Nanocrystals/Polyurethane Nanocomposites. Study from the Viewpoint of Microphase Separated Structure, Polym., 92, 751-757, 2013.
  19. Gardner D.J., Oporto G.S., Mills R., and Samir M.A.S.A., Adhesion and Surface Issues in Cellulose and Nanocellulose, Adhes. Sci. Technol., 22, 545-567, 2008.
  20. Dufresne A., Nanocellulose: A New Ageless Bionanomaterial, Today, 16, 220-227, 2013.
  21. Thakur M.K., Gupta R.K., and Thakur V.K., Surface Modification of Cellulose Using Silane Coupling Agent, Polym., 111, 849-855, 2014.
  22. Rincón-Iglesias M., Lizundia E., Correia D.M., Costa C.M., and Lanceros-Méndez S., The Role of CNC Surface Modification on the Structural, Thermal and Electrical Properties of Poly(vinylidene fluoride) Nanocomposites, Cellulose, 27, 3821-3834, 2020.
  23. de Oliveira Taipina M., Ferrarezi M.M.F., Yoshida I.V.P., and Gonçalves M.d.C., Surface Modification of Cotton Nanocrystals with a Silane Agent, Cellulose, 20, 217-226, 2013.
  24. Khanjanzadeh H., Behrooz R., Bahramifar N., Gindl-Altmutter W., Bacher M., Edler M., and Griesser T., Surface Chemical Functionalization of Cellulose Nanocrystals by 3-Aminopropyltriethoxysilane, J. Biol. Macromol., 106, 1288-1296, 2018.
  25. Chanda S., Bajwa D.S., Holt G., Stark N., Bajwa S.G., and Quadir M., Silane Compatibilzation to Improve the Dispersion, Thermal and Mechancial Properties of Cellulose Nanocrystals in Poly(ethylene oxide), Nanocomposites, 7, 1-11, 2021.
  26. Qian S., Sheng K., Yu K., Xu L., and Lopez C.A.F., Improved Properties of PLA Biocomposites Toughened with Bamboo Cellulose Nanowhiskers through Silane Modification, Mater. Sci., 53, 10920-10932, 2018.
  27. Andresen M., Stenstad P., Møretrø T., Langsrud S., Syverud K., Johansson L.-S., and Stenius P., Nonleaching Antimicrobial Films Prepared from Surface-Modified Microfibrillated Cellulose, Biomacromolecules, 8, 2149-2155, 2007.
  28. Hettegger H., Sumerskii I., Sortino S., Potthast A., and Rosenau T., Silane Meets Click Chemistry: Towards the Functionalization of Wet Bacterial Cellulose Sheets, ChemSusChem, 8, 680-687, 2015.
  29. Fernandes S.C., Sadocco P., Alonso-Varona A., Palomares T., Eceiza A., Silvestre A.J., Mondragon I., and Freire C.S., Bioinspired Antimicrobial and Biocompatible Bacterial Cellulose Membranes Obtained by Surface Functionalization with Aminoalkyl Groups, Phys. Chem., 5, 3290-3297, 2013.
  30. Xu J. and Guo B.-H., Poly(butylene succinate) and Its Copolymers: Research, Development and Industrialization, J., 5, 1149-1163, 2010.
  31. Ray S.S., Bandyopadhyay J., and Bousmina M., Thermal and Thermomechanical Properties of Poly[(butylene succinate)-co-adipate] Nanocomposite, Degrad. Stab., 92, 802-812, 2007.
  32. Kasirajan S. and Ngouajio M., Polyethylene and Biodegradable Mulches for Agricultural Applications: A Review, Sustain. Dev., 32, 501-529, 2012.
  33. Xu J. and Guo B.-H., Microbial Succinic Acid, Its Polymer Poly(butylene succinate), and Applications, Plastics from Bacteria: Natural Functions and Applications, Chen G.G.-Q. (Ed.), Springer Berlin Heidelberg, Berlin, Heidelberg, 
  34. Charlon S., Follain N., Soulestin J., Sclavons M., and Marais S., Water Transport Properties of Poly(butylene succinate) and Poly[(butylene succinate)-co-(butylene adipate)] Nanocomposite Films: Influence of the Water-Assisted Extrusion Process, Phys. Chem. C, 121, 918-930, 2017.
  35. Seggiani M., Gigante V., Cinelli P., Coltelli M.-B., Sandroni M., Anguillesi I., and Lazzeri A., Processing and Mechanical Performances of Poly(butylene succinate–co–adipate) (PBSA) and Raw Hydrolyzed Collagen (HC) Thermoplastic Blends, Test., 77, 105900, 2019.
  36. Li Y.D., Fu Q.Q., Wang M., and Zeng J.B., Morphology, Crystallization and Rheological Behavior in Poly(butylene succinate)/Cellulose Nanocrystal Nanocomposites Fabricated by Solution Coagulation, Polym., 164, 75-82, 2017.
  37. Zhang X. and Zhang Y., Poly(butylene succinate-co-butylene adipate)/Cellulose Nanocrystal Composites Modified with Phthalic Anhydride, Polym., 134, 52-59, 2015.
  38. Li J. and Qiu Z., Effect of Low Loadings of Cellulose Nanocrystals on the Significantly Enhanced Crystallization of Biodegradable Poly(butylene succinate-co-butylene adipate), Polym., 205, 211-216, 2019.
  39. Manna A.K., De P.P., Tripathy D.K., De S.K., and Peiffer D.G., Bonding between Precipitated Silica and Epoxidized Natural Rubber in the Presence of Silane Coupling Agent, Appl. Polym. Sci., 74, 389-398, 1999.
  40. Pavia D.L., Lampman G.M., Kriz G.S., and Vyvyan J.A., Introduction to Spectroscopy, Cengage Learning, USA, 2014.
  41. Sain M. and Panthapulakkal S., Bioprocess Preparation of Wheat Straw Fibers and Their Characterization, Crops Prod., 23, 1-8, 2006.
  42. Kargarzadeh H., Ahmad I., Abdullah I., Dufresne A., Zainudin S.Y., and Sheltami R.M., Effects of Hydrolysis Conditions on the Morphology, Crystallinity, and Thermal Stability of Cellulose Nanocrystals Extracted from Kenaf Bast Fibers, Cellulose, 19, 855-866, 2012.
  43. Raquez J.-M., Murena Y., Goffin A.-L., Habibi Y., Ruelle B., DeBuyl F., and Dubois P., Surface-Modification of Cellulose Nanowhiskers and their Use as Nanoreinforcers into Polylactide: A Sustainably-Integrated Approach, Sci. Technol., 72, 544-549, 2012.
  44. de Castro D.O., Bras J., Gandini A., and Belgacem N., Surface Grafting of Cellulose Nanocrystals with Natural Antimicrobial Rosin Mixture Using a Green Process, Polym., 137, 1-8, 2016.
  45. Samadi A., Abdolrasouli M.H., and Babaei A., Effect of Organo-clay Modifier and Compatibilizer on the Morphological Development and Cold Crystallization Kinetics of Polylactide/Polyethylene/Montmorillonite Nanocomposites, J. Polym. Sci. Technol. (Persian), 31, 251-264, 2018.
  46. Lee S., Kim M., Song H.Y., and Hyun K., Characterization of the Effect of Clay on Morphological Evaluations of PLA/Biodegradable Polymer Blends by FT-Rheology, Macromolecules, 52, 7904-7919, 2019.
  47. Chen R.-Y., Zou W., Zhang H.-C., Zhang G.-Z., Yang Z.-T., Jin G., and Qu J.-P., Thermal Behavior, Dynamic Mechanical Properties and Rheological Properties of Poly(butylene succinate) Composites Filled with Nanometer Calcium Carbonate, Test., 42, 160-167, 2015.
  48. Zeng R.-T., Hu W., Wang M., Zhang S.-D., and Zeng J.-B., Morphology, Rheological and Crystallization Behavior in Non-covalently Functionalized Carbon Nanotube Reinforced Poly(butylene succinate) Nanocomposites with Low Percolation Threshold, Test., 50, 182-190, 2016.
  49. Yang X., Li L., Shang S., and Tao X.-M., Synthesis and Characterization of Layer-Aligned Poly(vinyl alcohol)/Graphene Nanocomposites, Polymer, 51, 3431-3435, 2010.
  50. Ratna D., Divekar S., Samui A.B., Chakraborty B.C., and Banthia A.K., Poly(ethylene oxide)/Clay Nanocomposite: Thermomechanical Properties and Morphology, Polymer, 47, 4068-4074, 2006.
  51. Loyens W., Jannasch P., and Maurer F.H.J., Effect of Clay Modifier and Matrix Molar Mass on the Structure and Properties of Poly(ethylene oxide)/Cloisite Nanocomposites via Melt-Compounding, Polymer, 46, 903-914, 2005.
  52. Zhang X., Shi J., Ye H., Dong Y., and Zhou Q., Combined Effect of Cellulose Nanocrystals and Poly(butylene succinate) on Poly(lactic acid) Crystallization: The Role of Interfacial Affinity, Polym., 179, 79-85, 2018.
  53. Yasuniwa M., Tsubakihara S., and Murakami T., High-Pressure DTA of Poly(butylene terephthalate), Poly(hexamethylene terephthalate), and Poly(ethylene terephthalate), Polym. Sci. Polym. Phys., 38, 262-272, 2000.
  54. Yasuniwa M., Tsubakihara S., and Fujioka T., X-ray and DSC Studies on the Melt-Recrystallization Process of Poly(butylene naphthalate), Acta, 396, 75-78, 2003.
  55. Wunderlich B.K., Crystal Mucleation, Growth, Annealing, Academic, 1st ed., 1976.
  56. Yasuniwa M., Tsubakihara S., Satou T., and Iura K., Multiple Melting Behavior of Poly(butylene succinate). II. Thermal Analysis of Isothermal Crystallization and Melting Process, Polym. Sci. Polym. Phys., 43, 2039-2047, 2005.