پوشش‌های ضدباکتری بر پایه پلی‌یورتان‌های آب‌پایه‌: مروری بر روش‌های سنتز، خواص و کاربرد‌ها

نوع مقاله : مروری

نویسندگان

اصفهان، دانشگاه اصفهان، دانشکده شیمی، گروه شیمی پلیمر، کدپستی ۷۳۴۴١-٨١۷۴٦

چکیده

امروزه شیوع عفونت‌های باکتریایی و خسارات جانی و مالی ناشی از آن سبب شده است، دانشمندان همواره در پی یافتن راهکارهایی برای توسعه دانش در مهار این میکروارگانیسم‌های بیماری‌زا باشند. چسبندگی باکتری‌ها و رشد آن‌ها روی سطوح مختلف سبب ایجاد تجمع این میکروارگانیسم‌ها و تشکیل زیست‌فیلم می‌شود. این میکروکلونی‌های تشکیل‌شده‌ امکان رشد دارند و می‌توانند با جداشدن سطوح سبب گسترش عفونت شوند. بنابراین، بهترین راه برای جلوگیری از گسترش عفونت و بیماری‌ها، جلوگیری از تشکیل زیست‌فیلم ‌با استفاده از سطوح ضدمیکروب است. یکی از مهم‌ترین ابزارهای معرفی‌شده در این زمینه استفاده از پوشش‌های پلیمری ضدباکتری است. در میان پلیمرها، پلی‌یورتان‌ها به‌دلیل داشتن خواص منحصر به‌فرد از جمله، زیست‌سازگاری، امکان استفاده از مواد اولیه گوناگون و کنترل‌پذیری خواص مورد توجه فراوانی در این زمینه قرار گرفته‌اند. در سا‌ل‌های اخیر، پلی‌یورتان‌های آب‌پایه به‌دلیل کاهش استفاده از ترکیبات آلی فرار (VOC)، ساخت راحت، گران‌رَوی کم، امکان افشاندن‌، چسبندگی زیاد به سطوح مختلف، مقاومت سایشی زیاد، قابلیت پراکنش انواع افزودنی‌ها و تشکیل سریع فیلم در زمینه‌های زیست‌پزشکی نظیر پوشش‌های ضدباکتری، زخم‌پوش‌ها و محصولات زیستی بسیار مطالعات شده‌اند. در این مقاله مروری، ابتدا انواع روش‌های تهیه پوشش‌های پلیمری ضدباکتری تشریح می‌شوند که شامل استفاده از نانوساختارها، آمیخه‌سازی با پلیمرهای ضدباکتری و استفاده از مونومرهای ضدباکتری هستند. سپس، پلی‌یورتان‌ها و پلی‌یورتان‌های آب‌پایه معرفی می‌شوند. در ادامه، مطالعات انجام‌شده در زمینه تهیه پلی‌یورتان‌های آب‌پایه ضدباکتری با استفاده از راهکار‌هایی مانند افزودن نانوساختارها، آمیخته‌سازی با پلیمرهای ضدباکتری، بارگذاری دارو، استفاده از مونومرهای ضدباکتری و اصلاح سطح پلیمر مرور می‌شوند. محصولات تهیه‌شده طی این مطالعات برای کاربردهای گوناگونی نظیر پوشش‌دهی تجهیزات پزشکی، زخم‌پوش‌ها و صنایع بسته‌بندی پیشنهاد شده‌اند. 

کلیدواژه‌ها


عنوان مقاله [English]

Antibacterial Coatings Based on Waterborne Polyurethanes: A Review on Synthesis Methods, Properties and Applications

نویسندگان [English]

  • Abbas Mohammadi
  • mahtab eslamiyeh
Department of Chemistry, University of Isfahan, Postal Code 81746-73441, Isfahan, Iran
چکیده [English]

Today, the prevalence of bacterial infections and their resulting human and financial losses has led scientists constantly to seek solutions to develop knowledge in controlling these pathogenic microorganisms. Bacterial adhesion and their growth on different surfaces cause the accumulation of these microorganisms and the formation of biofilms. These developed microcolonies can grow and detach from the surface and spread infections. Therefore, the best way to prevent spreading the infections and diseases is to prevent the formation of biofilms using antimicrobial surfaces. In this regard, one of the most important tools introduced is the use of antibacterial polymer coatings. Polyurethanes have received much attention due to their unique properties such as biocompatibility, the possibility of using various raw materials, and controllable properties. In recent years, waterborne polyurethanes have been extensively studied due to less frequent use of volatile organic compounds (VOCs) in their preparations, easy fabrication, low viscosity, the possibility of spraying, high adhesion to different surfaces, high abrasion resistance, ability to disperse a variety of additives, and rapid film formation in biomedical fields such as antibacterial coatings, wound dressings, and biological products. In this review article, first, the various methods of preparing antibacterial polymer coatings are described. These methods include the use of nanostructures, combined with antibacterial polymers, and the use of antibacterial monomers. As a result, polyurethanes and waterborne polyurethanes have been developed. The following is a review of studies on the preparation of antibacterial waterborne polyurethanes using different strategies such as the addition of nanostructures, blending with antibacterial polymers, drug loading, the use of antibacterial monomers, and polymer surface modification. The products developed during these studies have been proposed for a variety of applications such as medical equipment coating, wound dressings and packaging industry. 

کلیدواژه‌ها [English]

  • Waterborne polyurethanes
  • Antibacterial coatings
  • Microorganisms
  • Synthesis
  • Application
  1. Mohammadi A., Doctorsafaei A.H., Burujeny S.B., Rudbari A., Kordestani N., and Najafabadi S.A.A., Silver (I) Complex with a Schiff Base Ligand Extended Waterborne Polyurethane: A Developed Strategy to Obtain a Highly Stable Antibacterial Dispersion Impregnated with In Situ Formed Silver Nanoparticles, Chem. Eng. J., 381, 122776, 2020.
  2. Wang F., Wang B., Li X., Wu Z., He Y., Song P., and Wang , Antimicrobial Cationic Acrylate-Based Hybrid Coatings Against Microorganism Contamination, Prog. Org. Coat., 142, 105576, 2020.
  3. Huang K.S., Yang C.H., Huang S.L., Chen C.Y., Lu Y.Y., and Lin S., Recent Advances in Antimicrobial Polymers: A Mini- Review, Int. J. Mol. Sci., 17, 1578, 2016.
  4. Kenawy E.R., Worley S.D., and Broughton R., The Chemistry and Applications of Antimicrobial Polymers: A State-of-the-Art Review, Biomacromolecules, 8, 1359-1384,
  5. Mitra , Kang E.T., and Neoh K.G., Applications and Challenges of Smart Antibacterial Coatings, Advances in Smart Coatings and Thin Films for Future Industrial and Biomedical Engineering Applications, Elsevier, 537-556, 2020.
  6. Eltorai A.E., Haglin J., Perera S., Brea B.A., Ruttiman R., Garcia D.R., and Daniels A.H., Antimicrobial Technology in Orthopedic and Spinal Implants, World J. Orthop., 7, 361,
  7. Marković , Kováčová M., Mičušik M., Danko M., Švajdlenkova H., Kleinova A., and Špitalský Z., Structural, Mechanical, and Antibacterial Features of Curcumin/ Polyurethane Nanocomposites, J. Appl. Polym. Sci., 136, 47283, 2019.
  8. Jiang , Li X., Che Y., Lv Y., Liu F., Wang Y., and Wang X., Antibacterial and Anticorrosive Properties of CuZnO@RGO Waterborne Polyurethane Coating in Circulating Cooling Water, Environ. Sci. Pollut. Res. Int., 26, 9027-9040, 2019.
  9. Fang , Pan S., Wang Z., Zhou X., Lei W., and Cheng Y., Synthesis of Waterborne Polyurethane Using Snow as Dispersant: Structures and Properties Controlled by Polyols Utilization, J. Mater. Sci. Technol., 35, 1491-1498, 2019.
  10. Wang X., Zhang Y., Liang H., Zhou X., Fang C., Zhang C., and Luo Y., Synthesis and Properties of Castor Oil-Based Waterborne Polyurethane/Sodium Alginate Composites with Tunable Properties, Polym., 208, 391-397, 2019.
  11. Mohammadi A., Eslamieh M., Salehi N., and Abrishamkar S., Waterborne Polyurethane for Biomedical Applications, Eco-Friendly Waterborne Polyurethanes, CRC, 193-211, 2022.
  12. Kim K., Seo J.W., and Jeong H.M., Morphology and Properties of Waterborne Polyurethane/Clay Nanocomposites, Eur. Polym. J., 39, 85-91, 2003.
  13. Yoo J. and Kim H.D., Characteristics of Waterborne Polyurethane/Poly(N-vinylpyrrolidone) Composite Films for Wound-Healing Dressings, J. Appl. Polym. Sci., 107, 331-338, 2008.
  14. Kuan H.C., Ma C.C.M., Chang W.P., Yuen S.M., Wu H.H., and Lee T.M., Synthesis, Thermal, Mechanical and Rheological Properties of Multiwall Carbon Nanotube/Waterborne Polyurethane Nanocomposite, Sci. Technol., 65, 1703-1710, 2005.
  15. Omrani , Babanejad N., Shendi H.K., and Nabid M.R., Fully Glutathione Degradable Waterborne Polyurethane Nanocarriers: Preparation, Redox-Sensitivity, and Triggered Intracellular Drug Release, Mater. Sci. Eng., C, 70, 607-616, 2017.
  16. Unnithan R., Gnanasekaran G., Sathishkumar Y., Lee Y.S., and Kim C.S., Electrospun Antibacterial Polyurethane- Cellulose Acetate-Zein Composite Mats for Wound Dressing, Carbohydr. Polym., 102, 884-892, 2014.
  17. Chang J., Yang G., Zheng Q., Wang Z., Xu Z., Chen Y., and Fan , Poly(N-acryloyl ciprofloxacin-co-acrylic acid)- Incorporated Waterborne Polyurethane Leather Coating with Long-lasting Antimicrobial Properties, J. Am. Leather Chem. Assoc., 112, 15-22, 2017.
  18. Xu C. and Siedlecki C.A., Antibacterial Polyurethanes, Advances in Polyurethane Biomaterials, Chapt. 9, 247-284, 2016.
  19. Akbar M.U., Rehman F.U., Ibrahim M., Barikani M., Mohammadi , Sobhani H., Mohammadi A., and Farrukh M.A., Processing Methods of Bionanocomposites, Bionanocomposites, 87-104, 2020.
  20. Ahamed M., AlSalhi M.S., and Siddiqui M.K.J., Silver Nanoparticle Applications and Human Health, Chim. Acta411, 1841-1848, 2010.
  21. Gurunathan S., Qasim M., Park C., Yoo H., Choi D.Y., Song , and Hong K., Cytotoxicity and Transcriptomic Analysis of Silver Nanoparticles in Mouse Embryonic Fibroblast Cells, Int. J. Mol. Sci., 19, 3618, 2018.
  22. Naz , Islam M., Tabassum S., Fernandes N.F., de Blanco E.J.C., and Zia M., Green Synthesis of Hematite (α-Fe2O3) Nanoparticles Using Rhus Punjabensis Extract and Their Biomedical Prospect in Pathogenic Diseases and Cancer, J. Mol. Struct., 1185, 1-7, 2019.
  23. Valsalam , Agastian P., Arasu M.V., Al-Dhabi N.A., Ghilan A.K.M., Kaviyarasu K., and Arokiyaraj S., Rapid Biosynthesis and Characterization of Silver Nanoparticles from the Leaf Extract of Tropaeolum Majus L. and Its Enhanced In-Vitro Antibacterial, Antifungal, Antioxidant and Anticancer Properties, J. Photochem. Photobiol. B: Biol., 191, 65-74, 2019.
  24. Piriaei and Khodaei M., Antibacterial Materials, 8th Specialized Congress of Medical Equipment Standards and Materials in the Field of Infection Control and Sterilization, Tehran, Iran University of Medical Sciences, 2016.
  25. Mohammadi , Barikani M., and Lakouraj M.M., Biocompatible Polyurethane/Thiacalix [4] Arenes Func- tionalized Fe3O4 Magnetic Nanocomposites: Synthesis and Properties, Mater. Sci. Eng. C, 66, 106-118, 2016.
  26. Tsou H., Lee H.T., Hung W.S., Wang C.C., Shu C.C., Suen M.C., and De Guzman M., Synthesis and Properties of Antibacterial Polyurethane with Novel Bis(3-pyridinemethanol) Silver Chain Extender, Polymer, 85, 96-105, 2016.
  27. Nabipour Y., Rostamzad A., and Ahmadi S., Comparative Study of Antibacterial Effects of Silver and Zinc Nanoparticles on Pathomonas aeruginosa and Staphylococcus aureus Pathogens, J. Public Health, 23, 173-181, 2015.
  28. Marambio-Jones and Hoek E.M., A Review of the Antibacterial Effects of Silver Nanomaterials and Potential Implications for Human Health and the Environment, J. Nanopart. Res., 12, 1531-1551, 2010.
  29. Liu H., Song J., Shang S., Song Z., and Wang D., Cellulose Nanocrystal/Silver Nanoparticle Composites as Bifunctional Nanofillers within Waterborne Polyurethane, ACS Mater. Interfaces, 4, 2413-2419, 2012.
  30. Thiel J., Pakstis L., Buzby S., Raffi M., Ni C., Pochan D.E., and Shah S.I., Antibacterial Properties of Silver-Doped Titania, Small, 3, 799-803, 2007.
  31. Mohapatra , Kumar D., Sharma N., and Mohapatra S., Morphological, Plasmonic and Enhanced Antibacterial Properties of Ag Nanoparticles Prepared Using Zingiber Officinale Extract, J. Phys. Chem. Solids, 126, 257-266, 2019.
  32. Yang , Du H., Lin Z., Yang L., Zhu H., Zhang H., and Gui X., ZnO Nanoparticles Filled Tetrapod-Shaped Carbon Shell for Lithium-Sulfur Batteries, Carbon, 141, 258-265, 2019.
  33. Mallakpour and Behranvand V., Nanocomposites Based on Biosafe Nano ZnO and Different Polymeric Matrixes for Antibacterial, Optical, Thermal and Mechanical Applications, Eur. Polym. J., 84, 377-403, 2016.
  34. Zhang , Liang X., Gadd G.M., and Zhao Q., Advanced Titanium Dioxide-Polytetrafluorethylene (TiO2-PTFE) Nanocomposite Coatings on Stainless Steel Surfaces with Antibacterial and Anti-Corrosion Properties, Appl. Surf. Sci., 490, 231-241, 2019.
  35. Fan , Li Q., Cai X., and Li Z., Synthesis of Reactive Waterborne Polyurethane Modified with Quaternary Ammonium Chain Extender and Its Color Fixation Properties, J. Text. Inst., 108, 1227-1233, 2017.
  36. Chitichotpanya , Inprasit T., and Chitichotpanya C., In Vitro Assessment of Antibacterial Potential and Mechanical Properties of Ag-TiO2/WPU on Medical Cotton Optimized with Response Surface Methodology, J. Nat. Fibers, 16, 88- 99, 2019.
  37. Mirmohseni A., Azizi M., and Dorraji M.S.S., A Promising Ternary Nanohybrid of Copper@ Zinc Oxide Intercalated with Polyaniline for Simultaneous Antistatic and Antibacterial Applications, Coat. Technol. Res., 16, 1411-1422, 2019.
  38. Kunkalekar K., Role of Oxides (Fe3O4, MnO2) in the Antibacterial Action of Ag-Metal Oxide Hybrid Nanoparticles, Noble Metal-Metal Oxide Hybrid Nanoparticles, Woodhead, 303-312, 2019.
  39. Azam A., Ahmed A.S., Oves M., Khan M.S., and Memic A., Size-Dependent Antimicrobial Properties of CuO Nanoparticles Against Gram-Positive and-Negative Bacterial Strains, J. Nanomed., 7, 3527, 2012.
  40. Hendessi S., Sevinis E.B., Unal S., Cebeci F.C., Menceloglu Z., and Unal H., Antibacterial Sustained-Release Coatings from Halloysite Nanotubes/Waterborne Polyurethanes, Prog. Org. Coat., 101, 253-261, 2016.
  41. Ruan , Zhang L., Zhang Z., and Xia X., Structure and Properties of Regenerated Cellulose/Tourmaline Nanocrystal Composite Films, J. Polym. Sci. B: Polym. Phys., 42, 367-373, 2004.
  42. Chakraborti M., Jackson J.K., Plackett D., Gilchrist S.E., and Burt H.M., The Application of Layered Double Hydroxide Clay (LDH)-Poly(lactide-co-glycolic acid)(PLGA) Film Composites for the Controlled Release of Antibiotics, Mater. Sci. Mater. Med., 23, 1705-1713, 2012.
  43. Chen , Zhang S., Jin T., and Zhao G., Synthesis and Characterization of Novel Covalently Linked Waterborne Polyurethane/Fe3O4Nanocomposite Films with Superior Magnetic, Conductive Properties and High Latex Storage Stability, Chem. Eng. Sci., 286, 249-258, 2016.
  44. Zia M.,  Zuber M., Saif M.J., Jawaid M., Mahmood K., Shahid M., Anjum M.N., and Ahmad M.N.J., Chitin Based Polyurethanes Using Hydroxyl Terminated Polybutadiene, Part III: Surface Characteristics, Int. J. Biol. Macromol., 62, 670- 676, 2013.
  45. El-Sayed A.A., El Gabry L.K., and Allam O.G., Application of Prepared Waterborne Polyurethane Extended with Chitosan to Impart Antibacterial Properties to Acrylic Fabrics, Mater.
    Sci. Mater. Med.
    , 21, 507-514, 2010.
  46. Bakhshi H., Yeganeh H., Mehdipour-Ataei S., Solouk A., and Irani S., Polyurethane Coatings Derived from 1,2,3-Triazole- Functionalized Soybean Oil-Based Polyols: Studying Their Physical, Mechanical, Thermal, and Biological Properties, Macromolecules, 46, 7777-7788, 2013.
  47. Muñoz-Bonilla and Fernández-García M., Polymeric Materials with Antimicrobial Activity, Prog. Polym. Sci., 37, 281-339, 2012.
  48. Wu , Wang C., Mu C., and Lin W., A Waterborne Polyurethane Coating Functionalized by Isobornyl with Enhanced Antibacterial Adhesion and Hydrophobic Property, Eur. Polym. J., 108, 498-506, 2018.
  49. Lexing H.A.N.G., Ting L.I., and Weifu D.O.N.G., Preparation of Waterborne Polyurethane Bonded with Quaternary Ammonium Salts and Antibacterial Properties via Contact- Killing, J. Funct. Polym., 35, 1-8, 2022.
  50. Wang , Wu J., Li L., Mu C., and Lin W., A Facile Preparation
    of a Novel Non-Leaching Antimicrobial Waterborne Poly-urethane Leather Coating Functionalized by Quaternary Phosphonium Salt, J. Leather Sci. Eng., 2, 1-12, 2020.
  51. Liu , Zou Y., Wang J., Wang S., and Liu X., A Novel Cationic Waterborne Polyurethane Coating Modified by Chitosan Biguanide Hydrochloride with Application Potential in Medical Catheters, J. Appl. Polym. Sci., 138, 50290, 2021.
  52. Yao C., Li X., Neoh K.G., Shi Z., and Kang E.T., Surface Modification and Antibacterial Activity of Electrospun Polyurethane Fibrous Membranes with Quaternary Ammonium Moieties, Membr. Sci., 320, 259-267, 2008.
  53. Tijing D., Ruelo M.T.G., Amarjargal A., Pant H.R., Park C.H., Kim D.W., and Kim C.S., Antibacterial and Superhydrophilic Electrospun Polyurethane Nanocomposite Fibers Containing Tourmaline Nanoparticles, J. Chem. Eng., 197, 41-48, 2012.
  54. Saeedi , Omrani I., Bafkary R., Sadeh E., Shendi H.K., and Nabid M.R., Facile Preparation of Biodegradable Dual Stimuli-Responsive Micelles from Waterborne Polyurethane for Efficient intracellular Drug Delivery, New J. Chem., 43, 18534-18545, 2019.
  55. Sabitha M. and Rajiv S., Preparation and Characterization of Ampicillin-Incorporated Electrospun Polyurethane Scaffolds for Wound Healing and Infection Control, Eng. Sci., 55, 541-548, 2015.
  56. Chen , Zhao R., Wang X., Li X., Peng F., Jin Z., and Wang C., Electrospun Mupirocin Loaded Polyurethane Fiber Mats for Anti-Infection Burn Wound Dressing Application, J. Biomater. Sci. Polym. Ed., 28, 162-176, 2017.
  57. Bahadur , Saeed A., Iqbal S., Shoaib M., ur Rahman M.S., Bashir M.I., and Mahmood T., Biocompatible Waterborne Polyurethane-Urea Elastomer as Intelligent Anticancer Drug Release Matrix: A Sustained Drug Release Study, React. Funct. Polym., 119, 57-63, 2017.
  58. Nematollahi , Tavakoli M., and Behjat A., Surface Modification Polymers Through Plasma, Basparesh, 9, 27-37, 2019.
  59. Huang , Wang Y., Zhang S., Huang L., Hua D., and Zhu X.,
    A Facile Approach for Controlled Modification of Chitosan under γ-Ray Irradiation for Drug Delivery, Macromolecules, 46, 814-818, 2013.
  60. Mohammadi A., Barikani , and Barmar M., Effect of Polyol Structure on the Properties of the Resultant Magnetic Polyurethane Elastomer Nanocomposites, Polym. Adv. Technol., 24, 978-985, 2013.
  61. Mohammadi A., Lakouraj M.M., and Barikani , Waterborne Polyurethanes Based on Macrocyclic Thiacalix [4] Arenes as Novel Emulsifiers: Synthesis, Characterization and Anti- Corrosion Properties, RSC Adv., 6, 87539-87554, 2016.
  62. Honarkar H., Barmar M., Barikani M., and Shokrollahi P., Synthesis and Characterization of Polyhedral Oligomeric Silsesquioxane-Based Waterborne Polyurethane Nano-composites, Korean Chem. Eng., 33, 319-329, 2016.
  63. Sukhawipat N., Saetung N., Pilard J.F., Bistac S., and Saetung , Synthesis and Characterization of Novel Natural Rubber Based Cationic Waterborne Polyurethane-Effect of Emulsifier and Diol Class Chain Extender, J. Appl. Polym. Sci., 135, 45715, 2018.
  64. Arshad , Zia K.M., Jabeen F., Anjum M.N., Akram N., and Zuber M., Synthesis, Characterization of Novel Chitosan Based Water Dispersible Polyurethanes and Their Potential Deployment as Antibacterial Textile Finish, Int. J. Biol. Macromol., 111, 485-492, 2018.
  65. Barikani M., Valipour Ebrahimi M., and Seyed Mohaghegh M., Preparation and Characterization of Aqueous Polyurethane Dispersions Containing Ionic Centers, J. Appl. Polym. Sci., 104, 3931-3937, 2007.
  66. Tripathi S., Mehrotra G.K., and Dutta P.K., Physicochemical and Bioactivity of Cross-Linked Chitosan–PVA Film for Food Packaging Applications, J. Biol. Macromol., 45, 372-376, 2009.
  67. Kim B., Aqueous Polyurethane Dispersions, Colloid Polym. , 274, 599-611, 1996.
  68. Barni A. and Levi , Aqueous Polyurethane Dispersions: A Comparative Study of Polymerization Processes, J. Appl. Polym. Sci., 88, 716-723, 2003.
  69. Barni A. and Levi M., Aqueous Polyurethane Dispersions: A Comparative Study of Polymerization Processes, Appl. Polym. , 88, 716-723, 2003.
  70. Barikani M., Valipour Ebrahimi M., and Seyed Mohaghegh M., Preparation and Characterization of Aqueous Polyurethane Dispersions Containing Ionic Centers, J. Appl. Polym. Sci., 104, 3931-3937, 2007.
  71. Jayakumar , Nanjundan S., and Prabaharan M., Developments in Metal-Containing Polyurethanes, Co-polyurethanes and Polyurethane Ionomers, J. Macromol. Sci. Phys., Part C: Polym. Rev., 45, 231-261, 2005.
  72. Francolini , D’Ilario L., Guaglianone E., Donelli G., Martinelli A., and Piozzi A., Polyurethane Anionomers Containing Metal Ions with Antimicrobial Properties: Thermal, Mechanical and Biological Characterization, Acta Biomater., 6, 3482-3490, 2010.
  73. Fu H., Wang Y., Chen W., and Xiao J., Reinforcement of Waterborne Polyurethane with Chitosan-Modified Halloysite Nanotubes, Surf. Sci., 346, 372-378, 2015.
  74. Najafabadi A.A., Mohammadi A., and Kharazi A.Z., Polyurethane Nanocomposite Impregnated with Chitosan- Modified Graphene Oxide as a Potential Antibacterial Wound Dressing, Mater. Sci. Eng. C , 115, 110899, 2020.
  75. Fei Liu X., Lin Guan Y., Zhi Yang D., Li Z., and De Yao K., Antibacterial Action of Chitosan and Carboxymethylated Chitosan, Appl. Polym. Sci., 79, 1324-1335, 2001.
  76. Fu , Shen Y., Jiang X., Huang D., and Yan Y., Chitosan Derivatives with Dual-Antibacterial Functional Groups for Antimicrobial Finishing of Cotton Fabrics, Carbohydr. Polym., 85, 221-227, 2011.
  77. Fan Q., Ma J., Xu Q., Zhang J., Simion D., Carmen G., and Guo C., Animal-Derived Natural Products Review: Focus on Novel Modifications and Applications, Colloids Surf. B, 128, 181-190, 2015.
  78. Zhang W., Deng H., Xia L., Shen L., Zhang C., Lu Q., and Sun , Semi-Interpenetrating Polymer Networks Prepared from Castor Oil-Based Waterborne Polyurethanes and Carboxymethyl Chitosan, Carbohydr. Polym., 256, 117507, 2021.
  79. Khil M.S., Cha D.I., Kim H.Y., Kim I.S., and Bhattarai N., Electrospun Nanofibrous Polyurethane Membrane as Wound Dressing, Biomed. Mater. Res., 67, 675-679, 2003.
  80. Zhang , Yang M., Woo M.W., Li Y., Han W., and Dang X., High-Mechanical Strength Carboxymethyl Chitosan-Based Hydrogel Film for Antibacterial Wound Dressing, Carbohydr. Polym., 256, 117590, 2021.
  81. Bankoti K., Rameshbabu A.P., Datta S., Maity P.P., Goswami , Datta P., and Dhara S., Accelerated Healing of full Thickness Dermal Wounds by Macroporous Waterborne Polyurethane- Chitosan Hydrogel Scaffolds, Mater. Sci. Eng. C, 81, 133- 143, 2017.
  82. Zo S., Choi S., Kim H., Shin E., and Han S., Synthesis and Characterization of Carboxymethyl Chitosan Scaffolds Grafted with Waterborne Polyurethane, Nanosci. Nanotechnol., 20, 5014-5018, 2020.
  83. Zhong , Luo S., Yang K., Wu X., and Ren T., High-Performance Anionic Waterborne Polyurethane/Ag Nanocomposites with Excellent Antibacterial Property via In Situ Synthesis of Ag Nanoparticles, RSC Adv., 7, 42296-42304, 2017.
  84. Bakhshi , Yeganeh H., Mehdipour-Ataei S., Shokrgozar M.A., Yari A., and Saeedi-Eslami S.N., Synthesis and Characterization of Antibacterial Polyurethane Coatings from Quaternary Ammonium Salts Functionalized Soybean Oil Based Polyols, Mater. Sci. Eng. C., 33, 153-164, 2013.
  85. Wang , Wu J., Li L., Mu C., and Lin W., A Facile Preparation
    of a Novel Non-Leaching Antimicrobial Waterborne Poly-urethane Leather Coating Functionalized by Quaternary Phosphonium Salt, J. Leather Sci. Eng., 2, 1-12, 2020.
  86. Domb A.J., Beyth N., and Farah S., Quaternary Ammonium Antimicrobial Polymers, MRS Online Proceedings Library (OPL), 1569, 97-107, 2013.
  87. Shokrollahi , Antibacterial Polyurethanes in Biomedical Applications, Basparesh, 7, 3-15, 2017.
  88. Liang H., Liu L., Lu J., Chen M., and Zhang C., Castor Oil- Based Cationic Waterborne Polyurethane Dispersions: Storage Stability, Thermo-Physical Properties and Antibacterial Properties, Crops. Prod., 117, 169-178, 2018.
  89. Koosha , Modern Commercial Wound Dressings and Introducing New Wound Dressings for Wound Healing: A Review, Basparesh, 6, 65-80, 2017.
  90. Wu , Wang C., Mu C., and Lin W., A Waterborne Polyurethane Coating Functionalized by Isobornyl with Enhanced Antibacterial Adhesion and Hydrophobic Property, Eur. Polym. J., 108, 498-506, 2018.
  91. Chen , Tan W., Li Q., Dong F., Gu G., and Guo Z., Synthesis of Inulin Derivatives with Quaternary Phosphonium Salts and Their Antifungal Activity, Int. J. Biol. Macromol., 113, 1273- 1278, 2018.
  92. Anthierens T., Billiet , Devlieghere F., and Du Prez F., Poly(butylene adipate) Functionalized with Quaternary Phosphonium Groups as Potential Antimicrobial Packaging Material, Innov. Food Sci. Emerg. Technol., 15, 81-85, 2012.
  93. Emami-Karvani and Chehrazi P., Antibacterial Activity of ZnO Nanoparticle on Gram-Positive and Gram-Negative Bacteria, Afr. J. Microbiol. Res., 5, 1368-1373, 2011.
  94. Anıl , Berksun E., Durmuş-Sayar A., Sevinis E.B., and Ünal S., Recent Advances in Waterborne Polyurethanes and Their Nanoparticle-Containing Dispersions, Handbook of Waterborne Coatings, 249-302, 2020.
  95. Mohammadi A., Barikani M., and Barmar M., Synthesis and Investigation of Thermal and Mechanical Properties of In Situ Prepared Biocompatible Fe3O4/Polyurethane Elastomer Nanocomposites, Bull., 72, 219-234, 2015.
  96. Patil K., Jirimali H.D., Paradeshi J.S., Chaudhari B.L., and Gite V.V., Functional Antimicrobial and Anticorrosive Polyurethane Composite Coatings from Algae Oil and Silver Doped Egg shell Hydroxyapatite for Sustainable Development, Prog. Org. Coat., 128, 127-136, 2019.
  97. Chen , Wang Q., Luan M., Mo J., Yan Y., and Li X., Polydopamine as Reinforcement in the Coating of Nano-silver on Polyurethane Surface: Performance and Mechanisms, Prog. Org. Coat., 137, 105288, 2019.
  98. Zhou , Teo S., and Srinivasan M.P., In Situ Formation of Silver Nanoparticle Layer by Supramolecule-Directed Assembly, Thin Solid Films, 550, 210-219, 2014.
  99. Hasnain and Nishat N., Synthesis, Characterization and Biocidal Activities of Schiff Base Polychelates Containing Polyurethane Links in the Main Chain, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 95, 452-457, 2012.
  100. Park J.H., Kim I.K., Choi J.Y., Karim M.R., Cheong I.W., Oh , and Yeum J.H., Electrospinning Fabrication of Poly(vinyl alcohol)/Waterborne Polyurethane/Silver Composite Nanofibre Mats in Aqueous Solution for Anti-Bacterial Exploits, Polym. Polym. Compos., 19, 753-762, 2011.
  101. Ma Y. and Zhang W.D., Effects of Flower-Like ZnO Nanowhiskers on the Mechanical, Thermal and Antibacterial Properties of Waterborne Polyurethane, Polym. Degrad. Stab., 94, 1103-1109, 2009.
  102. Fu H., Wang Y., Li X., and Chen W., Synthesis of Vegetable Oil-Based Waterborne Polyurethane/Silver-Halloysite Antibacterial Nanocomposites, Sci. Technol., 126, 86-93, 2016.
  103. Mohammadi , Barikani M., Doctorsafaei A.H., Isfahani A.P., Shams E., and Ghalei B., Aqueous Dispersion of Polyurethane Nanocomposites Based on Calix [4] Arenes Modified Graphene Oxide Nanosheets: Preparation, Characterization, and Anti- Corrosion Properties, Chem. Eng. Sci., 349, 466-480, 2018.
  104. Mirmohseni A., Azizi M., and Dorraji M.S.S., Facile Synthesis of Copper/Reduced Single Layer Graphene Oxide as a Multifunctional Nanohybrid for Simultaneous Enhancement of Antibacterial and Antistatic Properties of Waterborne Polyurethane Coating, Org. Coat., 131, 322-332, 2019.
  105. Mohammadi , Abdolvand H., and Isfahani A.P., Alginate Beads Impregnated with Sulfonate Containing Calix [4] Arene- Intercalated Layered Double Hydroxides: In Situ Preparation, Characterization and Methylene Blue Adsorption Studies, Int. J. Biol. Macromol., 146, 89-98, 2020.
  106. Tao , Zhang Y., Zhang X., Yuan P., and He H., Synthesis and Characterization of Layered Double Hydroxides with a High Aspect Ratio, J. Solid State Chem., 179, 708-715, 2006.
  107. Wang and O’Hare D., Recent Advances in the Synthesis and Application of Layered Double Hydroxide (LDH) Nanosheets, Chem. Rev., 112, 4124-4155, 2012.
  108. Yang , Xiong L., Huang X., Shi Q., and Zhang W.D., Waterborne Polyurethane Composites with Antibacterial Activity by Incorporating p-BzOH Intercalated MgAl-LDH, Compos. Commun., 13, 112-118, 2019.
  109. Hu , Yuan Y., and Shi W., Preparation of Waterborne Hyperbranched Polyurethane Acrylate/LDH Nanocomposite, Prog. Org. Coat., 75, 474-479, 2012.
  110. Xiong L., Zhang W.D., Shi Q.S., and Mai A.P., Waterborne Polyurethane/NiAl-LDH/ZnO Composites with High Antibacterial Activity, Adv. Technol., 26, 495-501, 2015.
  111. Shen , Drug Delivery Systems, Springer, Berlin, 2020.
  112. Agnol D., Dias F.T.G., Ornaghi Jr H.L., Sangermano M., and Bianchi O., UV-Curable Waterborne Polyurethane Coatings: A State-of-the-Art and Recent Advances Review, Prog. Org. Coat., 154, 106156, 2021.
  113. Liu K., Su Z., Miao S., Ma G., and Zhang S., UV-Curable Enzymatic Antibacterial Waterborne Polyurethane Coating, Eng. J., 113, 107-113, 2016.