توسعه مدلی جدید بر پایه مدل Ogden-Roxburgh برای پیش‌بینی رفتار نرم‌شدگی تنش در آمیزه‌های لاستیکی پرشده با دوده

نوع مقاله : پژوهشی

نویسندگان

تهران، پژوهشگاه پلیمر و پتروشیمی ایران، پژوهشکده فرایند، گروه لاستیک، صندوق پستی 112-14975

چکیده

فرضیه: هدف این مطالعه ارائه مدلی اصلاح‌شده برای پیش‌بینی پدیده نرم‌شدگی تنش (اثر Mullins) در‌آمیزه‌های لاستیکی پرشده با دوده است. معادله جدیدی برای محاسبه متغیر تخریب در مدل نرم‌شدگی Ogden-Roxburgh که بر پایه یک معادله سینتیکی قرار داشته و پارامترهای آن وابسته به کرنش اصلی اول هستند، پیشنهاد و راستی‌آزمایی تجربی شد. که بر پایه معادله سینتیکی قرار داشته و پارامترهای آن وابسته به کرنش اصلی اول هستند.
روش‌ها: چهارآمیزه لاستیکی بر پایه کائوچوهای S-SBR‌ و E-SBR که با دو مقدار مختلف دوده (40 و 60phr) تقویت‌شده بودند، ساخته و به شکل ورقه‌های لاستیکی پخت شدند. نمونه‌های دمبلی‌شکل از روی ورقه‌ها تهیه و در سه چرخه آزمون کششی رفت‌و‌برگشتی با سرعت 500mm/min قرار گرفتند. مقدار کشیدگی به نحوی اعمال شد که در هر چرخه مقدار کرنش نهایی نسبت به چرخه قبل افزایش یافت. همچنین آزمون تراکم‌پذیری به‌منظورتعیین مدول توده لاستیک و نسبت پوآسون روی نمونه‌ها انجام شد. سپس، مدل اجزای محدود دو آزمون یادشده ساخته شد. برای رفتارهای ابرکشسان از مدل Yeoh و نرم‌شدگی تنش از مدل جدید پیشنهادی استفاده شد که به‌صورت زیربرنامه رایانه‌ای‌ به نرم‌افزار Abaqusاضافه‌شده بود. به‌کمک نرم‌افزارIsight یک الگوریتم چرخه‌ای بهینه‌سازی طراحی و پارامترهای مدل برای آمیزه‌‌های نام‌برده به‌دست آمدند.
یافته‌ها: بررسی نمودار‌های نیرو برحسب زمان و نیرو برحسب تغییرشکل و نیز مقایسه بین مقدار خطای به‌دست‌آمده در مرحله بهینه‌سازی بین داده‌های تجربی و پیش‌بینی‌شده به‌کمک مدل جدید با مدل کلاسیک Ogden-Roxburgh نشان‌دهنده آن است که مدل پیشنهادی قابلیت بسیار خوب و دقت بیشتری در پیش‌بینی رفتار نرم‌شدگی تنش دارد. با مقایسه نسبت خطاها مشخص شد، مدل جدید از لحاظ کمی به‌طور متوسط %38 دقت بیشتری دارد. افزون بر این، ارتباط معنادار خوبی بین مقادیر عددی پارامترهای به‌دست‌آمده با گونه‌های کائوچو و مقادیر پرکننده وجود دارد.

کلیدواژه‌ها


عنوان مقاله [English]

Development of a New Model Based on Ogden-Roxburgh Model for the Prediction of the Stress-Softening Behavior of Carbon Black-Filled Rubber Compounds

نویسندگان [English]

  • Mir Hamid Reza Ghoreishy
  • Foroud Abbassi-Sourki
Department of Rubber Processing and Engineering, Faculty of Polymer Processing, Iran Polymer and Petrochemical Institute, P.O. Box 14975-112, Tehran, Iran
چکیده [English]

Hypothesis: The aim of this study was to propose a modified model for the prediction of a stress softening behavior (Mullins effect) in carbon black filled rubber compounds. A new equation was suggested for the calculation of the damage variable in the classical Ogden-Roxburgh model based on a previously developed kinetic equation. The parameters of the new model were assumed dependent on the first principal strain. The developed model was verified by comparison of the model predictions with experimental data
Methods: Four rubber compounds based on S-SBR and E-SBR reinforced by 40 and 60 phr carbon blacks were prepared and cured into rubber sheets. The rubber test specimens (ASTM D412 C) were cut and subjected to cyclic tensile tests at an extension rate of 500 mm/min. In order to show the stress softening behavior, three cycles were selected in a way that the maximum stretch at each cycle was increased consecutively. The volumetric tests were also carried out to determine the bulk modulus and Poisson's ratio. The finite element models of the mentioned tests were created for Abaqus code. The new model was implemented into Abaqus through a user-defined subroutine developed specifically for this research. An optimization algorithm developed in Isight code was employed to determine the parameters of the
model for the prepared compounds
Findings: Comparing the predicted force versus time and force versus displacement with their corresponding experimentally measured data and goodness of fitting for new model and classical Ogden-Roxburgh model revealed that the developed model has higher capability and accuracy in prediction of the mechanical behavior of the rubber compounds. Comparing the ratio of the computed errors between two models showed that the new model has higher accuracy with an average of 38%. Moreover it is found that there are good correlations between variation of the model parameters with rubber grades and filler contents.

کلیدواژه‌ها [English]

  • Rubber
  • Modeling
  • Stress softening
  • Mullins effect
  • Finite element method
  1. Ghoreishy M.H.R. and Abbassi-Sourki F., Study the Hyper- Viscoelastic and Stress Softening Behaviors of Various SBR/CB Filled Compounds Using a Triple Model, J. Polym. Sci. Technol. (Persian), 33, 339-350, 2020.
  2. Bergström , Continuum Mechanics Foundations, Mechanics of Solid Polymers: Theory and Computational Modeling, Elsevier, San Diego, CA, USA, 131-207, 2015.
  3. Ghoreishy H.R. and Abbassi-Sourki F., Development of a New Combined Numerical/Experimental Approach for the Modeling of the Nonlinear Hyper-viscoelastic Behavior of Highly Carbon Black Filled Rubber Compound, Polym. Test.,70, 135-143, 2018
  4. Abaqus, Simulia , Dassault Systemes,
  5. Samaei , Ghoreishy M.H.R., and Naderi G., Effects of SBR Molecular Structure and Filler Type on the Hyper-Viscoelastic Behavior of SBR/BR Radial Tyre Tread Compounds Using a Combined Numerical/Experimental Approach, Iran. J. Polym. Sci. Technol. (Persian), 32, 65-78, 2019.
  6. Ghoreishy H.R., and Abbassi Sourki F., Modeling the Hyperviscoelasticand Stress-Softening Behaviors of S-SBR/ CB-Filled Rubber Compound Using a Multicomponent Model, Mech. Time-Depend. Mater. (in Press), 2022. DOI. org/10.1007/s11043-022-09550-3
  7. Mullins , Softening of Rubber by Deformation, Rubber Chem. Technol., 42, 339-362, 1969.
  8. Mullins L. and Tobin N.R., Theoretical Model for the Elastic Behavior of Filler-Reinforced Vulcanized Rubbers, Rubber Technol., 30, 555-571, 1957.
  9. Holt L., Behavior of Rubber under Repeated Stresses, Rubber Chem. Technol., 5, 79-89, 1932.
  10. Payne A.R. and Whittaker R.E., Reinforcement of Rubber with Carbon Black, Composites, 1, 203-214, 1970.
  11. Payne A.R.,The Dynamic Properties of Carbon Black Loaded Natural Rubber Part I., J. Appl. Polym. Sci., 6, 57- 63, 1962.
  12. Payne A.R., The Dynamic Properties of Carbon Black-Loaded Natural Rubber Vulcanizates. Part II., Appl. Polym. Sci., 6, 368-372, 1962.
  13. Ogden R.W. and Roxburgh D.G., A Pseudo–Elastic Model for the Mullins Effect in Filled Rubber, Proceedings of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences, 455, 2861-2877, 1999.
  14. Lazopoulos K.A. and Ogden R.W., Nonlinear Elasticity Theory with Discontinuous Internal Variables, Mech. Solids, 3, 29-51, 1998.
  15. Dorfmann A. and Ogden R.W., A Constitutive Model for the Mullins Effect with Permanent Set in Particle-Reinforced Rubber, J. Solids Struct., 41, 1855-1878, 2004.
  16. Qi J. and Boyce M.C., Constitutive Model for Stretch- Induced Softening of the Stress-Stretch Behavior of Elastomeric Materials, J. Mech. Phys. Solids, 52, 2187-2205, 2004.
  17. Marckmann , Verron E., Gornet L., Chagnon G., Charrier P., and Fort P., A Theory of Network Alteration for the Mullins Effect, J. Mech. Phys. Solids, 50, 2011-2028, 2002.
  18. Arruda M. and Boyce M.C., A Three-Dimensional Constitutive Model for the Large Stretch Behavior of Rubber Elastic Materials, J. Mech. Phys. Solids, 41, 389-412, 1993.
  19. Chagnon , Verron E., Marckmann G., and Gornet L., Development of New Constitutive Equations for the Mullins Effect in Rubber Using the Network Alteration Theory, Int. J. Solids Struct., 43, 6817-6831, 2006.
  20. Luo R.K., Investigation on the Full Mullins Effect Using Time- Dependent Hyperelastic Model with Energy Dissipation for Rubber Antivibration Applications, Time-Depend. Mater., 25, 581-600, 2021.
  21. Jackstadt , Frölich F., Weidenmann K., and Kärger L., Modeling the Mullins Effect of Rubbers Used in Constrained- Layer Damping Applications, Proc. Appl. Math. Mech., 21, 1-4, 2021.
  22. Fazekas B. and Goda T.J., Constitutive Modelling of Rubbers: Mullins Effect, Residual Strain, Time-Temperature Dependence, J. Mech. Sci., 210, 106735, 2021.
  23. Yeoh O.H., Some Forms of the Strain Energy Function for Rubber, Rubber Tchnol., 66, 754-771, 1993.
  24. Ghoreishy H.R., Computer Simulation of Passenger Car Radial Tires Using the Finite Element Method, Computer Simulations: Advances in Research and Applications, Pfeffer M.D. and Bachmeier E. (Eds.), Nova Science, New York, 1-61, 2018.
  25. Ghoreishy H.R. and AbbassiSourki F., The Molecular Structure of SBR and Filler Type Effects on Thermal Diffusivity of SBR/BR Compounds used in Tire Tread, Iran. J. Polym. Sci. Technol. (Persian), 30, 139-149, 2017.
  26. Isight, Simulia, Dassault Systemes,