کاهش ترشوندگی غشاهای متخلخل پلیمری در تماس‌دهنده‌های غشایی: مروری بر روش‌ها و عوامل مؤثر بر آن

نوع مقاله : مروری

نویسندگان

1 بهبهان، دانشگاه صنعتی خاتم الانبیاء (ص) بهبهان، دانشکده مهندسی شیمی، کد پستی 63616-63973

2 تبریز، دانشگاه صنعتی سهند، دانشکده مهندسی شیمی، صندوق پستی 51335-1996

چکیده

تماس‌دهنده‌های غشایی گاز‌-مایع جایگزین‌های امیدوارکننده‌ای برای فناوری‌های جذب متداول هستند. چنین سامانه‌هایی با وجود داشتن برتری‌های مهم، با مشکل عمده تَرشوندگی تدریجی غشاهای متخلخل پلیمری با جاذب مایع مواجه هستند. در حقیقت، ترشوندگی غشاهای متخلخل پلیمری با جاذب‌های مایع، موجب افزایش مقاومت انتقال جرم فاز غشا می‌شود که در نتیجه آن بازده جذب گاز کاهش می‌یابد. بر این اساس، در مقاله حاضر اثر ترشوندگی غشا بر مقاومت انتقال جرم و بازده جذب و نیز اثر عوامل مؤثر بر پدیده ترشوندگی غشا مانند خواص جاذب و خواص غشا بررسی و نیز روش‌های مختلف جلوگیری از ترشوندگی غشا به‌تفصیل بحث شده است. نتایج مطالعات حاکی از افزایش مقدار ترشوندگی در سرعت‌ و فشار زیاد مایع جاذب است. همچنین کشش سطحی در جاذب‌های دارای ترکیبات آلی ‌با افزایش غلظت ترکیبات آلی به‌سرعت کاهش می‌یابد که افزایش مقدار ترشوندگی غشا را در پی دارد. بررسی‌های انجام‌شده درباره غشاهای مختلف پلیمری نشان داد، تغییرات ساختاری و شیمیایی سطح غشا که در اثر تماس بلندمدت غشا با جاذب‌های آمینی روی می‌دهد، به‌شدت مقدار ترشوندگی غشا و در نتیجه قابلیت عملکرد آن را تحت تأثیر قرار می‌دهد. همچنین، مطالعات انجام‌شده نشان داد، اصلاح سطح غشاها یکی از کارآمدترین روش‌ها برای جلوگیری از مشکل ترشوندگی آن‌هاست. با انجام اصلاح سطح می‌توان انرژی آزاد سطح غشا را کاهش و زبری آن را افزایش داد و بدین ترتیب موجب افزایش قدرت آب‌گریزی سطح غشا شد. در این میان، نانوفناوری یکی از مهم‌ترین فناوری‌ها در تولید غشاهای ابَر‌آب‌گریز در جلوگیری از مشکل ترشوندگی غشاهای متخلخل پلیمری معرفی شده است.

کلیدواژه‌ها


عنوان مقاله [English]

Reducing the Wettability of Porous Polymeric Membranes in Membrane Contactors: An Overview on the Methods and Their Effective Parameters

نویسندگان [English]

  • Parya Amirabedi 1
  • Saba Raveshiyan 2
  • Reza Yegani 2
1 Department of Chemical Engineering, Behbahan Khatam Alanbia University of Technology, Postal Code 63616-63973, Behbahan, Iran
2 Department of Chemical Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran
چکیده [English]

Gas-liquid membrane contactors are promising alternatives to conventional absorption technologies. However, despite their significant advantages, such systems face the major problem of gradual wetting of the porous polymeric membranes with liquid absorbents. In fact, wetting of porous polymeric membranes by liquid absorbents increases the mass transfer resistance of the membrane phase, which in turn, reduces the gas absorption efficiency. Accordingly, in this paper, the effect of membrane wetting on mass transfer resistance and absorption efficiency has been studied. The influence of effective parameters on membrane wetting phenomenon, such as absorbent and membrane properties, is investigated. In addition, different prevention methods of membrane wetting is discussed in detail. The results show the increase in the rate of wetting at high velocity and pressure of the absorbent. In the case of absorbents-containing organic compounds, their surface tension is decreased rapidly with the increasing concentration of organic compounds, which increased the wetting rate of the membrane. In addition, studies on various polymeric membranes have shown that the structural and chemical changes of the membrane surface, which occur due to long-term contact of the membranes with amine absorbents, strongly increase the wetting of the membranes, and thus, its functionality. Moreover, studies have shown that modifying the surface of membranes is one of the most effective methods to prevent the problem of wetting. By modifying the surface, the free energy of the membrane surface can be reduced and its roughness can be increased, thus increasing the hydrophobicity of the membrane surface. Among these, nanotechnology has been introduced as one of the most important technologies in the production of superhydrophobic membranes to prevent the problem of wetting the porous polymeric membranes. 

کلیدواژه‌ها [English]

  • Membrane contactors
  • Wetting
  • Superhydrophobic
  • Nanotechnology
  • Membrane surface modification
  1. Kumar S., Cho J.H., and Moon I., Ionic Liquid-Amine Blends and CO2BOLs: Prospective Solvents for Natural Gas Sweetening and CO2 Capture Technology-A Review, J. Greenh. Gas Control., 20, 87-116, 2014.
  2. George G., Bhoria N., AlHallaq S., Abdala A., and Mittal V., Polymer Membranes for Acid Gas Removal from Natural Gas, Purif. Technol., 158, 333-356, 2016.
  3. Liu C., Wu W.-Z., Xie W., Zhang T., and Zhang J., Forecasting Natural Gas Consumption of China by Using a Novel Fractional Grey Model with Time Power Term, Energy Rep., 7, 788-797, 2021.
  4. Hafezi R., Akhavan A., Pakseresht S., and Wood D.A., Global Natural Gas Demand to 2025: A Learning Scenario Development Model, Energy, 224, 120167, 2021.
  5. Amirabedi P., Akbari A., Yegani R., and Raveshiyan S., Effect of Methyl and Fluorine Grafted Silica Nanoparticles on the Performance of Polypropylene Membrane Contactors, J. Chem. Eng., 19, 89-100, 2020.
  6. Li L., Ma G., Pan Z., Zhang N., and Zhang Z., Research Progress in Gas Separation Using Hollow Fiber Membrane Contactors, Membranes, 10, 380, 2020.
  7. Hafeez S., Safdar T., Pallari E., Manos G., Aristodemou E., Zhang Z., Al-Salem S., and Constantinou A., CO2 Capture Using Membrane Contactors: A Systematic Literature Review, Chem. Sci. Eng., 15, 720-754, 2021.
  8. Vadillo J.M., Gomez-Coma L., Garea A., and Irabien A., Hollow Fiber Membrane Contactors in CO2 Desorption: A Review, Energy Fuels, 35, 111-136, 2020.
  9. Gabelman A. and Hwang S-T., Hollow Fiber Membrane Contactors, Membr. Sci., 159, 61-106, 1999.
  10. Amirabedi P., Yegani R., and Hesaraki A.H., Hydrophobicity Optimization of Polypropylene Hollow Fiber Membrane by Sol-Gel Process for CO2 Absorption in Gas–Liquid Membrane Contactor Using Response Surface Methodology, Polym. J., 26, 431-443, 2017.
  11. Amirabedi P., Akbari A., and Yegani R., Fabrication of Hydrophobic PP/CH3SiO2 Composite Hollow Fiber Membrane for Membrane Contactor Application, Purif. Technol., 228,115689, 2019.
  12. Reed B.W., Semmens M.J., and Cussler E.L., Membrane Contactors, Membr. Sci. Technol., 2, 467-498,1995.
  13. Yan S-P., Fang M-X., Zhang W-F., Wang S-Y., Xu Z-K., Luo Z-Y., Cen K-F., Experimental Study on the Separation of CO2 from Flue Gas Using Hollow Fiber Membrane Contactors without Wetting, Fuel Process. Technol., 88 501-511, 2007.
  14. Kumar P., Hogendoorn J., Feron P., and Versteeg G., New Absorption Liquids for the Removal of CO2 from Dilute Gas Streams Using Membrane Contactors, Eng. Sci., 57, 1639-1651, 2002.
  15. Bougie F., Sterically Hindered Amine Based Absorbents and Application for CO2 Capture in Membrane Contactors, PhD Thesis, Université Laval, 2014.
  16. Constantinou A., CO2 Absorption in Microstructured Membrane Reactors, PhD Thesis, UCL (University College London), 2012.
  17. Dalane K., Dai Z., Mogseth G., Hillestad M., and Deng L., Potential Applications of Membrane Separation for Subsea Natural Gas Processing: A Review, Nat. Gas Sci. Eng., 39, 101-117, 2017.
  18. Wang R., Li D.F., Zhou C., Liu M., and Liang D.T., Impact of DEA Solutions with and without CO2 Loading on Porous Polypropylene Membranes Intended for Use as Contactors, Membr. Sci., 229, 147-157, 2004.
  19. Franco J., Demontigny D., Kentish S., Perera J., and Stevens G., A Study of the Mass Transfer of CO2 Through Different Membrane Materials in the Membrane Gas Absorption Process, Sci. Technol., 43, 225-244, 2008.
  20. Rangwala H.A., Absorption of Carbon Dioxide into Aqueous Solutions Using Hollow Fiber Membrane Contactors, Membr. Sci., 112, 229-240, 1996.
  21. Mansourizadeh A., Ismail A., and Matsuura T., Effect of Operating Conditions on the Physical and Chemical CO2 Absorption Through the PVDF Hollow Fiber Membrane Contactor, Membr. Sci., 353, 192-200, 2010.
  22. Mosadegh-Sedghi S., Rodrigue D., Brisson J., and Iliuta M.C., Wetting Phenomenon in Membrane Contactors–Causes and Prevention, Membr. Sci., 452., 332-353, 2014.
  23. Hashemifard S.A., Matsuura T., Ismail A.F., Rezaei Dasht Arzhandi M., Rana D., and Bakeri G., Characterization of Partial Pore Wetting in Hollow Fiber Gas Absorption Membrane Contactors: An EDX Analysis Approach, Eng. J., 281, 970-980, 2015.
  24. Rongwong W., Fan C., Liang Z., Rui Z., Idem R.O., and Tontiwach-wuthikul P., Investigation of the Effects of Operating Parameters on the Local Mass Transfer Coefficient and Membrane Wetting in a Membrane Gas Absorption Process, Membr. Sci., 490, 236-246, 2015.
  25. Wang R., Zhang H.Y., Feron P.H.M., and Liang D.T., Influence of Membrane Wetting on CO2 Capture in Microporous Hollow Fiber Membrane Contactors, Sci. Technol., 46, 33-40, 2005.
  26. Cui Z. and deMontigny D., Part 7: A Review of CO2 Capture Using Hollow Fiber Membrane Contactors, Carbon Manag., 4, 69-89, 2013.
  27. Li J.-L. and Chen B.-H., Review of CO2 Absorption Using Chemical Solvents in Hollow Fiber Membrane Contactors, Sci. Technol., 41, 109-122, 2005.
  28. Kreulen H., Smolders C., Versteeg G., and Van Swaaij W.P.M., Determination of Mass Transfer Rates in Wetted and Non-Wetted Microporous Membranes, Eng. Sci., 48, 2093-2102, 1993.
  29. Kim B-S. and Harriott P., Critical Entry Pressure for Liquids in Hydrophobic Membranes, Colloid Interface Sci., 115, 1-8, 1987.
  30. Franken A., Nolten J., Mulder M., Bargeman D., and Smolders C., Wetting Criteria for the Applicability of Membrane Distillation, Membr. Sci., 33, 315-328, 1987.
  31. Dindore V., Brilman D.W.F., Feron P., and Versteeg G., CO2 Absorption at Elevated Pressures Using a Hollow Fiber Membrane Contactor, Membr. Sci., 235, 99-109, 2004.
  32. Zhang Z., Wu X., Wang L., Zhao B., Li J., and Zhang H., Wetting Mechanism of a PVDF Hollow Fiber Membrane in Immersed Membrane Contactors for CO2 Capture in the Presence of Monoethanolamine, RSC Adv., 7, 13451-13457, 2017.
  33. Zha F., Fane A., Fell C., and Schofield R., Critical Displacement Pressure of a Supported Liquid Membrane, Membr. Sci., 75, 69-80, 1992.
  34. Lu J-G., Zheng Y-F., and Cheng M-D., Wetting Mechanism in Mass Transfer Process of Hydrophobic Membrane Gas Absorption, Membr. Sci., 308, 180-190, 2008.
  35. Zhang H-Y., Wang R., Liang D.T., and Tay J.H., Theoretical and Experimental Studies of Membrane Wetting in the Membrane Gas–Liquid Contacting Process for CO2 Absorption, Membr. Sci., 308, 162-170, 2008.
  36. Rongwong W., Jiraratananon R., and Atchariyawut S., Experimental Study on Membrane Wetting in Gas–Liquid Membrane Contacting Process for CO2 Absorption by Single and Mixed Absorbents, Purif. Technol., 69, 118-125, 2009.
  37. Boributh S., Rongwong W., Assabumrungrat S., Laosiripojana N., and Jiraratananon R., Mathematical Modeling and Cascade Design of Hollow Fiber Membrane Contactor for CO2 Absorption by Monoethanolamine, Membr. Sci., 401, 175-189, 2012.
  38. Wang R., Li D.F., and Liang D.T., Modeling of CO2 Capture by Three Typical Amine Solutions in Hollow Fiber Membrane Contactors, Eng. Process.: Process Intensif., 43, 849-856, 2004.
  39. Zheng Q.S., Yu Y., and Zhao Z.H., Effects of Hydraulic Pressure on the Stability and Transition of Wetting Modes of Superhydrophobic Surfaces, Langmuir, 21, 12207-12212, 2005.
  40. Ansaloni L., Rennemo R., Knuutila H.K., and Deng L., Development of Membrane Contactors Using Volatile Amine-Based Absorbents for CO2 Capture: Amine Permeation Through the Membrane, Membr. Sci., 537, 272-282, 2017.
  41. Dindore V., Brilman D.W.F., Geuzebroek F., and Versteeg G., Membrane–Solvent Selection for CO2 Removal Using Membrane Gas–Liquid Contactors, Purif. Technol., 40, 133-145, 2004.
  42. Dindore V.Y., Brilman D.W.F., Feron P.H.M., and Versteeg G.F., Membrane–Solvent Selection for CO2 Removal Using Membrane Gas–Liquid Contactors, Membr. Sci., 235, 99-109, 2004.
  43. Lin S.-H., Hsieh C.-F., Li M.-H., and Tung K.-L., Determination of Mass Transfer Resistance During Absorption of Carbon Dioxide by Mixed Absorbents in PVDF and PP Membrane Contactor, Desalination, 249, 647-653, 2009.
  44. Mesbah M., Momeni M., Soroush E., Shahsavari S., and Galledari S.A., Theoretical Study of CO2 Separation from CO2/CH4 Gaseous Mixture Using 2-Methylpiperazine-Promoted Potassium Carbonate Through Hollow Fiber Membrane Contactor, Environ. Chem. Eng., 7, 102781, 2019.
  45. Rezakazemi M., Darabi M., Soroush E., and Mesbah M., CO2 Absorption Enhancement by Water-Based Nanofluids of CNT and SiO2 Using Hollow-Fiber Membrane Contactor, Purif. Technol., 210, 920-926, 2019.
  46. Lin S-H., Chiang P-C., Hsieh C-F., Li M-H., and Tung K-L., Absorption of Carbon Dioxide by the Absorbent Composed of Piperazine and 2-Amino-2-Methyl-1-Propanol in PVDF Membrane Contactor, J. Chem. Eng., 39, 13-21, 2008.
  47. deMontigny D., Tontiwachwuthikul P., and Chakma A., Using Polypropylene and Polytetrafluoroethylene Membranes in a Membrane Contactor for CO2 Absorption, Membr. Sci., 277, 99-107, 2006.
  48. Malek A., Li K., and Teo W., Modeling of Microporous Hollow Fiber Membrane Modules Operated under Partially Wetted Conditions, Eng. Chem. Res., 36, 784-793, 1997.
  49. Mansourizadeh A., Experimental Study of CO2 Absorption/Stripping via PVDF Hollow Fiber Membrane Contactor, Eng. Res. Des., 90, 555-562, 2012.
  50. Kamo J., Hirai T., and Kamada K., Solvent-Induced Morphological Change of Microporous Hollow Fiber Membranes, Membr. Sci., 70, 217-224, 1992.
  51. Barbe A., Hogan P., and Johnson R., Surface Morphology Changes During Initial Usage of Hydrophobic, Microporous Polypropylene Membranes, Membr. Sci., 172, 149-156, 2000.
  52. Fang M., Wang Z., Yan S., Cen Q., and Luo Z., CO2 Desorption from Rich Alkanolamine Solution by Using Membrane Vacuum Regeneration Technology, J. Greenh. Gas Control., 9, 507-521, 2012.
  53. Lv Y., Yu X., Tu S-T., Yan J., and Dahlquist E., Wetting of Polypropylene Hollow Fiber Membrane Contactors, Membr. Sci., 362, 444-452, 2010.
  54. Mosadegh-Sedghi S., Brisson J., Rodrigue D., and Iliuta M.C., Morphological, Chemical and Thermal Stability of Microporous LDPE Hollow Fiber Membranes in Contact with Single and Mixed Amine Based CO2 Absorbents, Purif. Technol., 96, 117-123, 2012.
  55. Amaral R.A., Habert A.C., and Borges C.P., Performance Evaluation of Composite and Microporous Gas–Liquid Membrane Contactors for CO2 Removal from a Gas Mixture, Eng. Process.: Process Intensif., 102, 202-209, 2016.
  56. Kreulen H., Smolders C.A., Versteeg G.F., and van Swaaij W.P.M., Microporous Hollow Fibre Membrane Modules as Gas-Liquid Contactors Part 2. Mass Transfer with Chemical Reaction, Membr. Sci., 78, 217-238, 1993.
  57. Yu X., An L., Yang J., Tu S.-T., and Yan J., CO2 Capture Using a Superhydrophobic Ceramic Membrane Contactor, Membr. Sci., 496, 1–12, 2015.
  58. Zhang H., Xue K., Cheng C., Gao D., and Chen H., Study on the Performance of CO2 Capture from Flue Gas with Ceramic Membrane Contactor, Purif. Technol., 265, 118521, 2021.
  59. Bougie F. and Iliuta M.C., Analysis of Laplace–Young Equation Parameters and Their Influence on Efficient CO2 Capture in Membrane Contactors, Purif. Technol., 118, 806-815, 2013.
  60. Chen S-C., Lin S-H., Chien R-D., Wang Y-H., and Hsiao H-C., Chemical Absorption of Carbon Dioxide with Asymmetrically Heated Polytetrafluoroethylene Membranes, Environ. Manage., 92, 1083-1090, 2011.
  61. Amirabedi P., Yegani R., and Razavi Aghjeh M-K., Experimental Design Applied to Fabrication of PSf Membranes via NIPS Method, Text. Polym., 1, 24-30, 2013.
  62. Choi S-H., Tasselli F., Jansen J.C., Barbieri G., and Drioli E., Effect of the Preparation Conditions on the Formation of Asymmetric Poly(vinylidene fluoride) Hollow Fibre Membranes with a Dense Skin, Polym. J., 46, 1713-1725, 2010.
  63. Dorrer C. and Rühe J., Some Thoughts on Superhydrophobic Wetting, Soft Matter, 5, 51-61, 2009.
  64. Chung T.-H., Wu S.-H., Yao M., Lu C.-W., Lin Y.-S., Hung Y., Mou C.-Y., Chen Y.-C., and Huang D.-M., The Effect of Surface Charge on the Uptake and Biological Function of Mesoporous Silica Nanoparticles in 3T3-L1 Cells and Human Mesenchymal Stem Cells, Biomaterials, 28, 2959-2966, 2007.
  65. Nosonovsky M. and Bhushan B., Roughness-Induced Superhydrophobicity: A Way to Design Non-Adhesive Surfaces, Phys. Condens. Matter, 20, 225009, 2008.
  66. Zhang Y., Wang R., Yi S., Setiawan L., Hu X., and Fane A.G., Novel Chemical Surface Modification to Enhance Hydrophobicity of Polyamide-Imide (PAI) Hollow Fiber Membranes, Membr. Sci., 380, 241-250, 2011.
  67. Rezaei M., Ismail A.F., Hashemifard S.A., and Matsuura T., Preparation and Characterization of PVDF-Montmorillonite Mixed Matrix Hollow Fiber Membrane for Gas-Liquid Contacting Process, Eng. Res. Des., 92, 2449-2460, 2014.
  68. Khaisri S., deMontigny D., Tontiwachwuthikul P., and Jiraratananon R., Comparing Membrane Resistance and Absorption Performance of Three Different Membranes in a Gas Absorption Membrane Contactor, Purif. Technol., 65, 290-297, 2009.
  69. Chen S.-C., Lin S.-H., Chien R.-D., and Hsu P.-S., Effects of Shape, Porosity, and Operating Parameters on Carbon Dioxide Recovery in Polytetrafluoroethylene Membranes, Hazard. Mater., 179, 692-700, 2010.
  70. Lv Y., Yu X., Jia J., Tu S.-T., Yan J., and Dahlquist E., Fabrication and Characterization of Superhydrophobic Polypropylene Hollow Fiber Membranes for Carbon Dioxide Absorption, Energy, 90, 167-174, 2012.
  71. Wang L., Zhang Z., Zhao B., Zhang H., Lu X., and Yang Q., Effect of Long-Term Operation on the Performance of Polypropylene and Polyvinylidene Fluoride Membrane Contactors for CO2 Absorption, Purif. Technol., 116, 300-306, 2013.
  72. Rahbari-Sisakht M., Rana D., Matsuura T., Emadzadeh D., Padaki M., and Ismail A., Study on CO2 Stripping from Water Through Novel Surface Modified PVDF Hollow Fiber Membrane Contactor, Eng. J., 246, 306-310, 2014.
  73. Cui Z. and deMontigny D., Experimental Study of Carbon Dioxide Absorption into Aqueous Ammonia with a Hollow Fiber Membrane Contactor, Membr. Sci., 540, 297-306, 2017.
  74. Cao C-F., Zhang G-D., Zhao L., Gong L-X., Gao J-F., Jiang J-X., Tang L.-C., and Mai Y.-W., Design of Mechanically Stable, Electrically Conductive and Highly Hydrophobic Three-Dimensional Graphene Nanoribbon Composites by Modulating the Interconnected Network on Polymer Foam Skeleton, Sci. Technol., 171, 162-170, 2019.
  75. Cui Z., Yin L., Wang Q., Ding J., and Chen Q., A Facile Dip-Coating Process for Preparing Highly Durable Superhydrophobic Surface with Multi-Scale Structures on Paint Films, Colloid Interface Sci., 337, 531-537, 2009.
  76. Amirabedi P., Raveshiyan S., and Yegani R., Fabrication of PP/fSiO2 Composite Hollow Fiber Membranes Intended for Membrane Contactor Application, Third International Conference on Chemistry and Chemical Engineering, Tehran, Iran, 2022.
  77. Zhang Y. and Wang R., Fabrication of Novel Polyetherimide-Fluorinated Silica Organic-Inorganic Composite Hollow Fiber Membranes Intended for Membrane Contactor Application, Membr. Sci., 443, 170-180, 2013.
  78. Feng S., Zhong Z., Wang Y., Xing W., and Drioli E., Progress and Perspectives in PTFE Membrane: Preparation, Modification, and Applications, Membr. Sci., 549, 332-349, 2018.
  79. Yang C., Li X-M., Gilron J., Kong D-F., Yin Y., and Oren Y., CF4 Plasma-Modified Superhydrophobic PVDF Membranes for Direct Contact Membrane Distillation, Membr. Sci., 456, 155-161, 2014.
  80. Rezaei M., Ismail A.F., Bakeri G., Hashemifard S.A., and Matsuura T., Effect of General Montmorillonite and Cloisite 15A on Structural Parameters and Performance of Mixed Matrix Membranes Contactor for CO2 Absorption, Eng. J., 260, 875-885, 2015.
  81. Zhang Y., Sunarso J., Liu S., and Wang R., Current Status and Development of Membranes for CO2/CH4 Separation: A Review, J. Greenh. Gas Control., 12, 84-107, 2013.
  82. Zhang Y. and Wang R., Gas–Liquid Membrane Contactors for Acid Gas Removal: Recent Advances and Future Challenges, Opin. Chem., 2, 255-262, 2013.
  83. Pang H., Gong H., Du M., Shen Q., and Chen Z., Effect of Non-Solvent Additive Concentration on CO2 Absorption Performance of Polyvinylidenefluoride Hollow Fiber Membrane Contactor, Purif. Technol., 191, 38-47, 2018.
  84. Naim R. and Ismail A.F., Effect of Polymer Concentration on the Structure and Performance of PEI Hollow Fiber Membrane Contactor for CO2 Stripping, Hazard. Mater., 250-251, 354-361, 2013.
  85. Zheng L., Wu Z., Wei Y., Zhang Y., Yuan Y., and Wang J., Preparation of PVDF-CTFE Hydrophobic Membranes for MD Application: Effect of LiCl-Based Mixed Additives, Membr. Sci., 506, 71-85, 2016.
  86. Essalhi M. and Khayet M., Surface Segregation of Fluorinated Modifying Macromolecule for Hydrophobic/Hydrophilic Membrane Preparation and Application in Air Gap and Direct Contact Membrane Distillation, J. Membr. Sci., 417, 163-173, 2012.
  87. Prince J., Rana D., Singh G., Matsuura T., Kai T.J., and Shanmugasundaram T., Effect of Hydrophobic Surface Modifying Macromolecules on Differently Produced PVDF Membranes for Direct Contact Membrane Distillation, Eng. J., 242, 387-396, 2014.
  88. Khayet M. and Matsuura T., Application of Surface Modifying Macromolecules for the Preparation of Membranes for Membrane Distillation, Desalination, 158, 51-56, 2003.
  89. Hamza A., Pham V.A., Matsuura T., and Santerre J.P., Development of Membranes with Low Surface Energy to Reduce the Fouling in Ultrafiltration Applications, Membr. Sci., 131, 217-227, 1997.
  90. Khulbe K., Feng C., Matsuura T., Mosqueada-Jimenaez D., Rafat M., and Kingston D., Characterization of Surface-Modified Hollow Fiber Polyethersulfone Membranes Prepared at Different Air Gaps, Appl. Polym. Sci., 104, 710-721, 2007.
  91. Bakeri G., Matsuura T., Ismail A., and Rana D., A Novel Surface Modified Polyetherimide Hollow Fiber Membrane for Gas-Liquid Contacting Processes, Purif. Technol., 89, 160-170, 2012.
  92. Bakeri G., Ismail A., Rana D., and Matsuura T., Development of High Performance Surface Modified Polyetherimide Hollow Fiber Membrane for Gas-Liquid Contacting Processes, Eng. J., 198, 327-337, 2012.
  93. Chung T-S., Jiang L.Y., Li Y., and Kulprathipanja S., Mixed Matrix Membranes (MMMs) Comprising Organic Polymers with Dispersed Inorganic Fillers for Gas Separation, Polym. Sci., 32, 483-507, 2007.
  94. Aroon M., Ismail A., Matsuura T., and Montazer-Rahmati M., Performance Studies of Mixed Matrix Membranes for Gas Separation, A Review, Purif. Technol., 75, 229-242, 2010.
  95. Naderi-Samani H., Loghman-Estarki M., Razavi R.S., and Ramazani M., The Effects of Organoclay on the Morphology, Thermal Stability, Transparence and Hydrophobicity Properties of Polyamide-Imide/Nanoclay Nanocomposite Coatings, Org. Coat., 112, 162-168, 2017.
  96. Zhao Q., Choo H., Bhatt A., Burns S.E., and Bate B., Review of the Fundamental Geochemical and Physical Behaviors of Organoclays in Barrier Applications, Clay Sci., 142, 2-20, 2017.
  97. Rezaei-DashtArzhandi M., Ismail A.F., Bakeri G., Hashemifard S.A., and Matsuura T., Effect of Hydrophobic Montmorillonite (MMT) on PVDF and PEI Hollow Fiber Membranes in Gas-Liquid Contacting Process: A Comparative Study, RSC Adv., 5, 103811-103821, 2015.
  98. Bhadra M. and Mitra S., Advances in Nanostructured Membranes for Water Desalination. Nanotechnology Applications for Clean Water, 2st ed., Elsevier, 109-122, 2014.
  99. Dong X., Chen J., Ma Y., Wang J., Chan-Park M.B., and Liu X., Superhydrophobic and Superoleophilic Hybrid Foam of Graphene and Carbon Nanotube for Selective Removal of Oils or Organic Solvents from the surface of Water, Commun., 48, 10660-10662, 2012.
  100. Moura F.C. and Lago R.M., Catalytic Growth of Carbon Nanotubes and Nanofibers on Vermiculite to Produce Floatable Hydrophobic “Nanosponges” for Oil Spill Remediation, Catal. B., 90, 436-440, 2009.
  101. Zhang L. and Resasco D.E., Single-Walled Carbon Nanotube Pillars: A Superhydrophobic Surface, Langmuir, 25, 4792-4798, 2009.
  102. Aljumaily M.M., Alsaadi M.A., Das R., Hamid S.B.A., Hashim N.A., and AlOmar M.K., Optimization of the Synthesis of Superhydrophobic Carbon Nanomaterials by Chemical Vapor Deposition, Rep., 8, 1-12, 2018.
  103. Yan K-K., Jiao L., Lin S., Ji X., Lu Y., and Zhang L., Superhydrophobic Electrospun Nanofiber Membrane Coated by Carbon Nanotubes Network for Membrane Distillation, Desalination, 437, 26-33, 2018.
  104. Uzoma P.C., Liu F., Xu L., Zhang Z., Han E-H., Ke W., and Arukalam I.O., Superhydrophobicity, Conductivity and Anticorrosion of Robust Siloxane-Acrylic Coatings Modified with Graphene Nanosheets, Org. Coat., 127, 239-251, 2019.
  105. Rosli A., Ahmad A.L., and Low S.C., Enhancing Membrane Hydrophobicity Using Silica End-Capped with Organosilicon for CO2 Absorption in Membrane Contactor, Purif. Technol., 251,117429, 2020.
  106. Amirabedi P., Akbari A., Yegani R., and Raveshiyan S., Study on CO2 Stripping from MEA Through PP/CH3SiO2 Composite Hollow Fiber Membrane Contactor, Eng. Technol., 45,1512-1521, 2022.
  107. Talavari A., Ghanavati B., Azimi A., and Sayyahi S., PVDF/MWCNT Hollow Fiber Mixed Matrix Membranes for Gas Absorption by Al2O3 Nanofluid, Chem.  Biochem. Res., 177-190, 2021.
  108. Bhattacharya A. and Misra B., Grafting: A Versatile Means to Modify Polymers: Techniques, Factors and Applications, Polym. Sci., 29, 767-814, 2004.
  109. Lee X.J., Show P.L., Katsuda T., Chen W-H., and Chang J-S., Surface Grafting Techniques on the Improvement of Membrane Bioreactor: State-of-the-Art Advances, Technol., 269, 489-502, 2018.
  110. Goh P.S., Naim R., Rahbari-Sisakht M., and Ismail A.F., Modification of Membrane Hydrophobicity in Membrane Contactors for Environmental Remediation, Purif. Technol., 227, 115721, 2019.
  111. Raveshiyan S., Amirabedi P., Yegani R., Pourabbas B., and Tavakoli A., Study on CO2 Absorption Through
    PP/fSiO2 Nanocomposite Hollow Fiber Membrane Contactor, Polyolefins J., 9, 61-71, 2022.