اثر شکل‌شناسی زیرآیند پلی‌یورتان بر خواص گازتراوایی غشاهای لایه‌ای کوپلیمر قطعه‌ای پلی(دی‌متیل‌سیلوکسان)/پلی‌یورتان

نوع مقاله : پژوهشی

نویسندگان

تهران، دانشگاه تربیت مدرس، دانشکده مهندسی شیمی، گروه مهندسی پلیمر، صندوق پستی 143-14115

چکیده

فرضیه: غشاهای کوپلیمرهای قطعه‌ای پلی(دی‌متیل‌سیلوکسان) گزینه مناسبی در کاربرد جداسازی گاز هستند. خواص جداسازی گاز و استحکام مکانیکی این پلیمرها با ساخت غشاهای لایه‌ای بهبودپذیر است. در غشاهای لایه‌ای، لایه پوششی معمولاً کنترل‌کننده جریان و گزینش‌پذیری گاز در غشای کامپوزیتی است، در حالی که زیرآیند متخلخل به‌عنوان تأمین‌کننده استحکام مکانیکی غشای لایه‌ای نقش ایفا می‌کند. لایه متراکم، در سطح مشترک زیرآیند و لایه گزینشی، می‌تواند بر بازده جداسازی گاز غشاهای لایه‌ای اثرگذار باشد و عملکرد آن به شکل‌شناسی و تراوایی زیرآیند و خواص تراوایی لایه پوششی وابسته است. هدف این پژوهش، ساخت و بررسی اثر شکل‌شناسی زیرآیند، بر عملکرد غشاهای لایه‌ای کوپلیمرهای قطعه‌ای پلی(دی‌متیل‌سیلوکسان)/پلی‌یورتان است.
روش‌ها: زیرآیند‌های پلی‌یورتان با روش جدایی فاز القایی با ضدحلال (NIPS) تهیه شدند. زیرآیند‌های مختلف با تغییر ترکیب درصد محلول ریخته‌گری (10، 20، 25، %30 وزنی پلیمر) و حمام رسوب‌دهی (نسبت مولی آب/متانول=100/0، 80/20، 30/70، 50/50) با دو شکل‌شناسی اسفنجی (اسفنج‌گونه) و انگشتی (انگشت‌مانند) تهیه شدند و در ساخت غشاهای لایه‌‌ای کوپلیمرهای قطعه‌ای پلی(دی‌متیل‌سیلوکسان)/پلی‌یورتان استفاده شدند.
یافته‌ها: زیرآیند‌‌های پلی‌یورتان در حالتی که از حمام انعقاد آب در ساخت غشاها استفاده شد، به‌دلیل سرعت تبادل زیاد حلال-ضدحلال، شکل‌شناسی انگشتی نشان دادند. در حالی که با افزودن متانول به حمام انعقاد، شکل‌شناسی زیرآیند به حالت اسفنجی تغییر کرد. به‌طور کلی، استفاده از زیرآیند پلی‌یورتان، خواص جداسازی گاز غشاهای کوپلیمرهای قطعه‌ای پلی(دی‌متیل‌سیلوکسان) را بهبود بخشید. نتایج نشان داد، با تغییر شکل‌شناسی زیرلایه از حالت انگشتی به اسفنجی، مقدار گازتراوایی CO2 از غشاهای تهیه‌شده از مقدار  1.58GPU به 4.53GPU افزایش می‌یابد. حال آنکه مقدار گزینش‌پذیری غشاهای لایه‌ای (CO2/N2) از 21.94 به 12.57کاهش یافته است.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of Polyurethane Substrate Morphology on Gas Permeation Properties of Poly(dimethyl siloxane) Block Copolymer/Polyurethane Layered Membranes

نویسندگان [English]

  • Maral Ghahramani
  • Mohammad semsarzadeh
Polymer Reaction Engineering Department, Chemical Engineering Faculty, Tarbiat Modares University, Tehran, Iran P.O. Box: 14115-143
چکیده [English]

Hypothesis: Poly(dimethyl siloxane) block copolymers membranes are a good choice for gas separation application. The mechanical strength and gas separation properties of these polymers can be improved by the preparation of layered membranes. In layered membranes, the coating layer generally controls the flow and selectivity of gas, while the porous substrate plays the role of mechanical strength supplier. The dense layer, at the interface of the substrate and selective layer, can also affect the efficiency of the layered membranes gas separation, and its performance depends on the morphology of the substrate and the gas permeation properties of the substrate and the coating layer. The goal of this research is to prepare and investigate the effect of substrate morphology on the performance of poly(dimethyl siloxane) block copolymers/polyurethane layered membranes.
Methods: Polyurethane substrates were prepared through the non-solvent-induced phase separation (NIPS) method. Different substrates with sponge-like and finger-like morphology structures were prepared with the help of changing the concentration of dope solution concentration (10, 20, 25, 30% by weight of polymer) and coagulation bath (molar ratio of water/methanol=100/0, 80/20, 70/30 and 50/50), and used for the preparation of poly(dimethyl siloxane) block copolymer/polyurethane layered membranes.
Findings: The polyurethane substrates revealed a finger-like morphology structure when a water coagulation bath was used due to the high exchange rate of solvent/non-solvent. Meanwhile, by adding methanol to the coagulation bath, the morphology of the substrate changed to a sponge-like one. In an overview, the gas separation properties of poly(dimethyl siloxane) block copolymers were improved by using a polyurethane substrate. The results revealed that by changing the morphology of the substrate from finger-like to sponge-like, the CO2 permeability of the membranes improved from 1.58 GPU to 4.53 GPU. While the permselectivity of the layered membranes (CO2/N2) decreased from 21.94 to 12.57.

کلیدواژه‌ها [English]

  • Polyurethane
  • Non-solvent induced phase separation
  • Layered membrane
  • Block copolymer
  • Poly(dimethyl siloxane)
  1. Scholes C.A., Stevenes G.W., and Kentish E., Membrane Gas Separation Applications in Natural Gas Processing, Fuel, 96, 15-26, 2012.
  2. Yampolskii Y., Pinnau I., and Freeman B., Materials Science of Membranes for Gas and Vapor Separation,Wiley, 2006.
  3. Ye X., Zhou J., Zhang C., and Wang Y., Controlled Biomolecules Separation by CO2-Responsive Block Copolymer Membranes, Membr. Sci., 662, 121022, 2022.
  4. Powell C.E. and Qiao G.G., Polymeric CO2/N2 Gas Separation Membranes for the Capture of Carbon Dioxide from Power Plant Flue Gases, Membr. Sci., 279, 1-49, 2006.
  5. Hamad F., Khulbe , and Matsuura T., Comparison of Gas Separation Performance and Morphology of Homogeneous and Composite PPO Membranes, J. Membr. Sci., 256, 29-37, 2005.
  6. Jiang L., Fabrication and Characterization of Composite Membranes for Gas Separation, PhD Thesis, Singapore, National University of Singapore, 2006.
  7. Guillen G.R., Pan Y., Li M., and Hoek E.M., Preparation and Characterization of Membranes Formed by Nonsolvent Induced Phase Separation: A Review, Eng. Chem. Eng., 50, 3798-3817, 2011.
  8. Saedi S., Madaeni S.S., and Shamsabadi A.A., PDMS Coated Asymmetric PES Membrane for Natural Gas Sweetening: Effect of Preparation and Operating Parameters on Performance, J. Chem. Eng., 92, 892-904, 2014
  9. Madaeni S.S., Enayati E., and Vatanpour V., The Influence of Membrane Formation Parameters on Structural Morphology and Performance of PES/PDMS Composite Membrane for Gas Separation, Appl. Polym. Sci., 122, 827-839, 2011.
  10. Madaeni S., Badieh , and Vatanpour V., Effect of Coating Method on Gas Separation by PDMS/PES Membrane, Polym. Eng. Sci., 53, 1878-1885, 2013.
  11. Shamsabadi A.A., Kargari A., Babaheidari M.B., Laki S., and Ajami H., Role of Critical Concentration of PEI in NMP Solutions on Gas Permeation Characteristics of PEI Gas Separation Membranes, Ind. Eng. Chem., 19, 677-685, 2013.
  12. Sadrzadeh M., Amirilargani M., Shahidi K., and Mohammadi T., Gas Permeation Through a Synthesized Composite PDMS/PES Membrane, Membr. Sci., 342, 236-250, 2009.
  13. Car A., Stropnik C., Yave W., and Peinemann K.V., Pebax®/Polyethylene Glycol Blend Thin Film Composite Membranes for CO2 Separation: Performance with Mixed Gases, Purif. Technol., 62, 110-117, 2008.
  14. Li , Song E., Park J.T., and Kim J.H., High-Performance Composite Membrane with Enriched CO2-Philic Groups and Improved Adhesion at the Interface, ACS Appl. Mater. Interfaces, 9, 11903-11915, 2014.
  15. Peter J. and Peinemann K.V., Multilayer Composite Membranes for Gas Separation based on Crosslinked PTMSP Gutter Layer and Partially Crosslinked Matrimid 5218 Selective Layer, Membr. Sci., 340, 62-72, 2009.
  16. Semsarzadeh M.A. and Ghahramani M., The Effect of Poly(alkyl (meth)acrylate) Segments on the Thermodynamic Properties, Morphology and Gas Permeation Properties of Poly(alkyl (meth)acrylate)-b-poly(dimethyl siloxane) Triblock Copolymer Membranes, Membr. Sci., 594, 117400, 2020.
  17. Semsarzadeh M.A. and Ghahramani M., Synthesis and Characterization of Poly(ethyl methacrylate)-b-Poly(dimethyl siloxane)-b-Poly(ethyl methacrylate) Triblock Copolymer: The Effect of Solvent on Morphology, Polym. Res., 23, 148-160, 2016.
  18. Semsarzadeh M.A. and Ghahramani M., Synthesis and Morphology of Polyacrylate-Poly(dimethyl siloxane) Block Copolymers for Membrane Application, Res., 23, 898-908, 2015.
  19. Semsarzadeh M.A. and Ghahramani M., Surface Energy and Thermal Stability Studies of Poly(alkyl (meth)acrylate)-Poly(dimethyl siloxane) Copolymers, Plast. Technol. Eng., 56, 1923-1936, 2017.
  20. Semsarzadeh M.A. and Ghahramani M., Preparation, Characterization and Permeation Behavior of Poly(methyl acrylate)-Poly(dimethyl siloxane)-Poly(methyl acrylate) Block Copolymer/Poly(vinyl acetate) Blend Membranes, J. Polym. Sci. Technol. (Persian), 28, 47-60, 2015.
  21. Clodt J.I., Block Copolymer Membranes-Progress and Challenges, Membranes, 12, 354, 2022.
  22. Freeman B. and Yampolskii Y., Membrane Gas Separation, John Wiley and Sons, 2001.
  23. Tsujita , Yoshimura K., Yoshimizu H., Takizawa A., Furukawa M., Yamada Y., and Wada K., Structure and Gas Permeability of Siloxane-Imide Block Copolymer Membranes: 1. Effect of Siloxane Content, Polymer, 34, 2597-2601, 1993.
  24. Davletbaeva I., Dzhabbarov I.M., Gumerov A.M., Zaripov I.I., Davletbaev R.S.,  Atlaskin A.A.,  Sazanova T.S., and  Vorotyntsev I.V.,  Amphiphilic Poly(dimethylsiloxane-ethylene-propylene oxide)-Polyisocyanurate Cross-Linked Block Copolymers in a Membrane Gas Separation, Membranes, 11, 94, 2021.
  25. Mark J.E., Polymer Data Handbook, Oxford University, New York, 2009.
  26. Van Krevelen D.W. and Te Nijenhuis K., Properties of Polymers: Their Correlation with Chemical Structure; Their Numerical Estimation and Prediction from Additive Group Contributions, Elsevier, 2009.
  27. Yilgör E. and Yilgör I., Silicone Containing Copolymers: Synthesis, Properties and Applications, Polym. Sci., 39, 1165-1195, 2014.
  28. Lipika and Singh A.K., Polydimethylsiloxane Based Sustainable Hydrophobic/Oleophilic Coatings for Oil/Water Separation: A Review, Mater., 6, 100136, 2022.
  29. Cheng -X., Gao W-CH., Ren X-M., Ouyang X-Y., Zhao Y., Zhao H., Wu W., Huang Ch.-X., Liu Y., Liu X.Y., Li H.N., and Li R.K.Y., A Review of Microphase Separation of Polyurethane: Characterization and Applications, Polym. Test., 107, 107489, 2022.
  30. Semsarzadeh M.A., Sadeghi M., and Barikani M., Effect of Chain Extender Length on Gas Permeation Properties of Polyurethane Membranes, Polym. J., 17, 431-440, 2008.
  31. Tsai R.S., You J.W., Lee Y.D., and Tsai H.B., Block Copolyesters of Poly(pentamethylene 2,6-Naphthalenedicarboxylate) and Poly(tetramethylene adipate), Appl. Polym. Sci., 86, 3652-3659, 2002.
  32. Chen T.K., Chui J.Y., and Shieh T.S., Glass Transition Behaviors of a Polyurethane Hard Segment Based on 4, 4'-Diisocyanatodiphenylmethane and 1,4-Butanediol and the Calculation of Microdomain Composition, Macromolecules, 30, 5068-5074, 1997.
  33. Yang X., Liew S.R., and Bai R., Simultaneous Alkaline Hydrolysis and Non-solvent Induced Phase Separation Method for Polyacrylonitrile (PAN) Membrane with Highly Hydrophilic and Enhanced Anti-fouling Performance, Membr. Sci., 635, 119499, 2021.
  34. Kim K., Hyung C., Ingole P.G., Kim J., and Lee H., Preparation, Characterization, and Performance Evaluation of Coated PES Polymer Materials Fabricated via Dry/Wet Phase Inversion Technique, Appl. Polym. Sci., 131, 2014.
  35. Macchione M., Jansen J.C., and Drioli E., The Dry Phase Inversion Technique as a Tool to Produce Highly Efficient Asymmetric Gas Separation Membranes of Modified PEEK. Influence of Temperature and Air Circulation, Desalination, 192, 132-141, 2006.
  36. Madaeni S.S., Bakhtari L., and Salehi E., Influence of Binary Interactions on Phase Behavior of Water/Dimethylsulfoxide/Polyethersulfone Casting Solution: Thermodynamic Modeling, Adv. Technol., 24, 1011-1017, 2013.
  37. Madaeni S.S. and Bakhtiari L., Thermodynamic-Based Predictions of Membrane Morphology in Water/Dimethylsulfoxide/Polyethersulfone Systems, Polymer, 53, 4481-4488, 2012.
  38. Hansen C.M., Hansen Solubility Parameters: A User’s Handbook, CRC, 2012.
  39. Sukitpaneenit P. and Chung T.S., Molecular Elucidation of Morphology and Mechanical Properties of PVDF Hollow Fiber Membranes from Aspects of Phase Inversion, Crystallization and Rheology, Membr. Sci., 340, 192-205, 2009.
  40. Barzin J., Madaeni S., Mirzadeh H., and Mehrabzadeh M., Effect of Polyvinylpyrrolidone on Morphology and Performance of Hemodialysis Membranes Prepared from Polyethersulfone, Appl. Polym. Sci., 92, 3804-3813, 2004.
  41. Van¢t Hof J., Reuvers A., Boom R., Rolevink H., and Smolders C., Preparation of Asymmetric Gas Separation Membranes with High Selectivity by a Dual-Bath Coagulation Method, Membr. Sci., 70, 17-30, 1992.
  42. Reid R.C., Prausnitz J.M., and Poling B.E., The Properties of Liquids and Gases, McGraw-Hill, New York, 1987.
  43. Zuo D.Y., Zhu B.K., Cao J.H., and Xu Y.Y., Influence of Alcohol-Based Nonsolvents on the Formation and Morphology of PVDF Membranes in Phase Inversion Process, Chinese J. Polym. Sci., 24, 281-289, 2006.
  44. Garbassi F., Morra M., Occhiello E., and Garbassi F., Polymer Surfaces: From Physics to Technology, Wiley Chichester, 1998.
  45. Luo Z.H., Yu H.J., and He T.Y., Synthesis and Characterization of the Hydrophobic Diblock Copolymers of Poly(dimethylsiloxane)-block-Poly(ethyl methyl acrylate) Through Atom Transfer Radical Polymerization, Appl. Polym. Sci., 108, 1201-1208, 2008.
  46. Himma N.F., Wardani A.K., and Wenten I.G., The Effects of Non-solvent on Surface Morphology and Hydrophobicity of Dip-Coated Polypropylene Membrane, Res. Express., 4, 054001, 2017.
  47. Rezac M.E. and Koros W.J., Preparation of Polymer–Ceramic Composite Membranes with Thin Defect-Free Separating Layers, Appl. Polym. Sci., 46, 1927-1938, 1992.
  48. Yampolskii Y., Polymeric Gas Separation Membranes, Macromolecules, 45, 3311-3298, 2012.
  49. Robson L.M., The Upper Bound Revisited, Membr. Sci., 320, 390-400, 2008.
  50. Robeson L.M., Smith Z.P., Freeman B.D., and Paul D.R., Contributions of Diffusion and Solubility Selectivity to the Upper Bound Analysis for Glassy Gas Separation Membranes, Membr. Sci., 453, 71-83, 2014.
  51. Henis J. and Tripodi M.K., Composite Hollow Fiber Membranes for Gas Separation: The Resistance Model Approach, Membr. Sci., 8, 233-246, 1981.
  52. Peng F., Liu J., and Li J., Analysis of the Gas Transport Performance Through PDMS/PS Composite Membranes Using the Resistances-in-Series Model, Membr. Sci., 222, 225-234, 2003.
  53. Karode S. and Kulkarni S., Analysis of Transport Through Thin Film Composite Membranes Using an Improved Wheatstone Bridge Resistance Model, Membr. Sci., 127, 131-140, 1997.
  54. Zhu L., Jia W., Kattula M., Ponnuru K., Furlani E.P., and Lin H., Effect of Porous Supports on the Permeance of Thin Film Composite Membranes: Part I. Track-Etched Polycarbonate Supports, Membr. Sci., 514, 684-695, 2016.
  55. Zhuang G.-L., Wey M.-Y., and Tseng H.-H., Effect of Copolymer Microphase-Separated Structures on the Gas Separation Performance and Aging Properties of SBC-Derived Membranes, Membr. Sci., 529, 63-71, 2017.
  56. Pegoraro M., Severini F., Gallo R., and Zanderighi L., Gas Transport Properties of Siloxane Polyurethanes, Appl. Polym. Sci., 57, 421-429, 1995.
  57. Nalawade S.P., Picchioni F., Marsman J.H., and Janssen L., The FT-IR Studies of the Interactions of CO2 and Polymers having Different Chain Groups, Supercrit. Fluids, 36, 236-244, 2006.
  58. Ahmadi R., Sanaeepur H., Ebadi Amooghin A., and Heydari A., Modification of Poly(ether-b-amide) Membrane Properties Using Glycerol for CO2/N2 Gas Separation, J. Polym. Sci. Technol. (Persian), 31, 461-474, 2018.
  59. Asakawa S., Saitoh Y., Waragai K., and Nakagawa T., Composite Membrane of Poly(1-(trimethylsilyl)-propyne) as a Potential Oxygen Separation Membrane, Gas Sep. Purif., 3, 117-122, 1989.