نوع مقاله : پژوهشی
نویسندگان
1 تهران، پژوهشگاه رویان، پژوهشکده زیستشناسی و فناوری سلولهای بنیادی جهاد دانشگاهی، مرکز تحقیقات علوم سلولی، گروه مهندسی سلول، کد پستی 14965-115
2 تهران، شرکت مواد شیمیایی ژرفاندیشان فناور زیستبسپار، گروه زیستمواد، کد پستی 1417755362
چکیده
کلیدواژهها
عنوان مقاله [English]
نویسندگان [English]
Hypothesis: Due to the presence of intra- and inter molecular hydrogen bonding in alginate chemical structure, its electrospinning capability is weak. However, this weakness can be improved through substitution of hydroxyl groups by sulfate groups. This article focuses on the role of degree of substitution of sulfate groups on the physicochemical properties of electrospinning solutions, such as viscosity, electrical conductivity and electrospinning conditions.
Methods: Sodium sulfated alginate (SSA) was synthesized through the reaction of sodium alginate and chlorosulfonic acid in formamide as the solvent. The amount of chlorosulfonic acid was varied in order to obtain the SSA samples with different degrees of substitution. The chemical structures of neat alginate and SSA were studied by FTIR and 1H NMR spectroscopy. Degree of sulfation of samples was measured using CHNS elemental analysis, and the electrical conductivity and viscosity of SSA solutions were measured. The SSA nanofibers were fabricated using electrospinning and further crosslinked by a solution of calcium chloride to improve its hydrolytic stability. Finally, the fiber diameter and mechanical properties of the nanofibrous mat were studied by SEM and a tensile mechanical machine.
Findings: Both FTIR and 1H NMR analyses have confirmed the formation of sulfate groups in SSA structure. Based on elemental analysis, the degree of substitution (DS) of SSA samples has been measured as 0.9 and 0.5 for SSA1 and SSA0.5, respectively. The electrical conductivity and viscosity of the SSA solutions also increased and decreased by increasing DS, respectively. The SSA1 sample showed better electrospinning capability and higher SSA content in dry electrospun mat compared to those in SSA0.5 sample. Finally, the crosslinked SSA1 mat revealed a lower mechanical strength compared to SSA0.5 mat due to lower crosslink density and higher chain scission of polymeric chains resulted from sulfation reaction.
کلیدواژهها [English]