مواد انتقال‌کننده حفره ‌بر پایه پلیمرهای نوع-p در سلول‌های خورشیدی پروسکیت معکوس

نوع مقاله : مروری

نویسندگان

اصفهان، دانشگاه اصفهان، دانشکده شیمی، گروه شیمی آلی و پلیمر، کد پستی 73441-81746

چکیده

در سالیان اخیر، بازده سلول‌های خورشیدی پروسکیت رشد چشمگیری حدود %25.5 داشته‌اند. با وجود این، ثبات بلندمدت آن‌ها برای تولید صنعتی هنوز نگرانی عمده است. یکی از دلایل مهم ناپایداری و تخریب لایه پروسکیت، حساسیت آن به نفوذ رطوبت و اکسیژن و ناپایداری در برابر نور فرابنفش، میدان الکتریکی و دماست. در این میان، مواد انتقال‌دهنده‌ حفره نقش کلیدی در ساخت سلول خورشیدی پروسکیت معکوس پایدار از جمله تنظیم رشد و دانه‌بندی بلور پروسکیت و ایجاد سطح آب‌گریز با ساختار مناسب را دار ند. البته نقش لایه انتقال‌دهنده حفره تابع نوع پیکربندی سلول خورشیدی پروسکیت است که به‌طور تفصیلی در بخش مربوط با جزئیات بررسی می‌شود. در یک دهه‌ اخیر، پژوهشگران بر توسعه مواد انتقال‌دهنده‌ حفره پایدار دارای افزودنی و بدون افزودنی بر پایه نیمه‌رسانای پلیمری تمرکز کرده‌اند. پلیمرها دارای خواص منحصر‌به‌فردی مانند وزن مولکولی تنظیم‌پذیر، تحرک حفره بهتر نسبت به ترکیبات با ساختار آلی و قابلیت رسانندگی مناسب در شرایط بدون افزودنی در بستر چاپ سه‌بعدی در مقیاس صنعتی هستند. افزون بر این، مقرون‌به‌صرفه‌بودن مراحل سنتز و قابلیت جابه‌جایی در بین لایه‌ها در فرایند ساخت سلول سبب شده است، پلیمرها در این زمینه جذاب و نوآور باشند. از این‌رو، در مقاله حاضر عملکرد و سازوکار لایه انتقال‌دهنده‌ حفره بر پایه نیمه‌رسانای پلیمری نوع-p و اثر ساختارهای مختلف اجزای سامانه‌های پلیمری بر سامانه‌ سلول خورشیدی معکوس پروسکایتی ارزیابی و بررسی می‌شود. پلیمرهایی مانند پلی(4،3-اتیلن‌دی‌اکسی‌تیوفن) پلی‌استیرن سولفونات (PEDOT:PSS)، پلی(3-هگزیل‌تیوفن) (P3HT) و پلی(بیس(4-فنیل) 6،4،2-تری‌متیل‌فنیل)آمین (PTAA) بیشترین بررسی‌ها و آزمایش‌ها را به خود اختصاص داده‌اند که از این میان PTAA به‌عنوان گزینه‌ای مطلوب‌تر و کارآمدتر، به بازده فراتر از %25 رسیده ‌است. 

کلیدواژه‌ها


عنوان مقاله [English]

Hole-Transporting Materials Based on p-Type Polymers in Invert Perovskite Solar Cells

نویسندگان [English]

  • Esmaeil Sheibani
  • Mostafa Moslempoor
  • Fatemeh Arami Ghahfarokhi
Department of Organic Chemistry and Polymer, Faculty of Chemisty, University of Isfahan, Isfahan, Postal Code 81746-73441, Iran
چکیده [English]

In recent years, the performance of perovskite solar cells (PSCs) has made a significant growth of about 25.5%. Nonetheless, the long-term stability of these cells for industrial production is still a major concern. One of the important reasons for the instability and degradation of the perovskite layer is its sensitivity toward moisture, oxygen, lack of resistance to ultraviolet light, electric fields, and temperature. In this context, hole-transporting materials (HTMs) play a key role in the construction of a stable inverted perovskite solar cell, including regulating the growth and crystallization of the perovskite and creating a water-repellent surface with a suitable structure. Naturally, the function of a hole-transporting layer depends on the type of perovskite solar cell configuration, and it is discussed in detail in the relevant section. In recent decades, researchers have focused on developing stable HTMs based on additive and non-additive semi-conducting polymers. Polymers have unique properties such as adjustable molecular weight, easier mobility of the hole compared to organic compounds, and suitable conductivity under additive-free conditions for 3D printing applications at an industrial scale. In addition, the cost-effectiveness of synthesis steps and potential interlayer displacement during the manufacturing process has made attraction and innovations in this area. Therefore, this article evaluates and analyzes the performance and mechanism of hole-transporting layers based on p-type semi-conducting polymers and the effect of various component structures of polymer systems on the inverse perovskite solar cell system. Polymers such as, pol(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS), poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine] (PTAA), and (poly(3-hexylthiophene) (P3HT) have received most of the research and experimentation, with PTAA being the most desirable and efficient option, reaching over 25% efficiency. 

کلیدواژه‌ها [English]

  • "Hole-Transport Layer"
  • " Semiconductor Polymer"
  • " Perovskite Solar Cells"
  • "Stability"
  • "Industrial scale"
  1. Lewis N.S. and Nocera D.G., Powering the Planet: Chemical Challenges in Solar Energy Utilization, Natl. Acad. Sci., 103, 15729-15735, 2006.
  2. Service R.F., Is It Time to Shoot for the Sun?, Science, 309, 548-551, 2005.
  3. Weickert J., Dunbar R.B., Hesse H.C., Wiedemann W., and Schmidt-Mende L., Nanostructured Organic and Hybrid Solar Cells, Mater., 23, 1810-1828, 2011.
  4. Sheibani E., Heydari M., Ahangar H., Mohammadi H., Fard H.T., Taghavinia N., Samadpour M., and Tajabadi F., 3D Asymmetric Carbozole Hole Transporting Materials for Perovskite Solar Cells, Energy, 189, 404-411, 2019.
  5. Wu J., Hu M., Zhang L., Song G., Li Y., Tan W., Tian Y., and Xu B., Fluorinated Cross-Linkable and Dopant-Free Hole Transporting Materials for Efficient and Stable Perovskite Solar Cells, Eng., 422, 2021.
  6. Merck, Price, https://www.sigmaaldrich.com, Available in June 2023.
  7. Sun C., Zhu C., Meng L., and Li Y., Quinoxaline-Based D-A Copolymers for the Applications as Polymer Donor and Hole Transport Material in Polymer/Perovskite Solar Cells, Mater., 34, e2104161, 2022.
  8. Ali H.M., Reda S.M., Ali A.I., and Mousa M.A., A Quick Peek at Solar Cells and a Closer Insight at Perovskite Solar Cells, J. Pet., 30, 53-63, 2021.
  9. Saive R., Light Trapping in Thin Silicon Solar Cells: A Review on Fundamentals and Technologies, Photovolt.: Res. Appl., 29, 1125-1137, 2021.
  10. Sheibani E., Yang L., and Zhang J., Recent Advances in Organic Hole Transporting Materials for Perovskite Solar Cells, RRL., 4, 2020.
  11. Lindh L., Gordivska O., Persson S., Michaels H., Fan H., Chabera P., Rosemann N.W., Gupta A.K., Benesperi I., Uhlig J., Prakash O., Sheibani E., Kjaer K.S., Boschloo G., Yartsev A., Freitag M., Lomoth R., Persson P., and Warnmark K., Dye-Sensitized Solar Cells Based on Fe N-Heterocyclic Carbene Photosensitizers with Improved Rod-Like Push-Pull Functionality, Sci. J., 12, 16035-16053, 2021.
  12. Gatty M.G., Pullen S., Sheibani E., Tian H., Ott S., and Hammarstrom L., Direct Evidence of Catalyst Reduction on Dye and Catalyst Co-Sensitized NiO Photocathodes by Mid-Infrared Transient Absorption Spectroscopy, Sci. J., 9, 4983-4991, 2018.
  13. Sheibani E., Amini M., Heydari M., Ahangar H., Keshavarzi R., Zhang J., and Mirkhani V., Hole Transport Material Based on Modified N-Annulated Perylene for Efficient and Stable Perovskite Solar Cells, Energy, 194, 279-285, 2019.
  14. Precedence Research, Energy and Power, https://www.precedenceresearch.com/solar-power-market, Available in March 2022.
  15. Zhang J., Hao Y., Yang L., Mohammadi H., Vlachopoulos N., Sun L., Hagfeldt A., and sheibani E., Electrochemically Polymerized Poly(3,4-phenylenedioxythiophene) as Efficient and Transparent Counter Electrode for Dye Sensitized Solar Cells, Acta, 300, 482-488, 2019.
  16. O’regan B. and Grätzel M., A Low-Cost, High-Efficiency Solar Cell Based on Dye-Sensitized Colloidal TiO2 Films, Nature, 353, 737-740, 1991.
  17. Bach U., Lupo D., Comte P., Moser J.E., Weissörtel F., Salbeck J., Spreitzer H., and Grätzel M., Solid-State Dye-Sensitized Mesoporous TiO2 Solar Cells with High Photon-to-Electron Conversion Efficiencies, Nature, 395, 583-585, 1998.
  18. Mathew S., Yella A., Gao P., Humphry-Baker R., Curchod B.F., Ashari-Astani N., Tavernelli I., Rothlisberger U., Nazeeruddin M.K., and Gratzel M., Dye-Sensitized Solar Cells with 13% Efficiency Achieved through the Molecular Engineering of Porphyrin Sensitizers, Chem., 6, 242-247, 2014.
  19. Kojima A., Teshima K., Shirai Y., and Miyasaka T., Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells, Am. Chem. Soc., 131, 6050-6051, 2009.
  20. Kim H.-S., Lee C.-R., Im J.-H., Lee K.-B., Moehl T., Marchioro A., Moon S.-J., Humphry-Baker R., Yum J.-H., and Moser J.E., Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%, Rep., 2, 591, 2012.
  21. Li Z., Li B., Wu X., Sheppard S.A., Zhang S., Gao D., Long N. J., and Zhu Z., Organometallic-Functionalized Interfaces for Highly Efficient Inverted Perovskite Solar Cells, Science, 376, 416-420, 2022.
  22. Yoo J.J., Seo G., Chua M.R., Park T.G., Lu Y., Rotermund F., Kim Y.K., Moon C.S., Jeon N.J., Correa-Baena J.P., Bulovic V., Shin S.S., Bawendi M.G., and Seo J., Efficient Perovskite Solar Cells via Improved Carrier Management, Nature, 590, 587-593, 2021.
  23. Zhang J., Wang L., Zhang X., Xie G., Jia G., Zhang J., and Yang X., Blue Light-Emitting Diodes Based on Halide Perovskites: Recent Advances and Strategies, Today, 51, 222-246, 2021.
  24. Mali S.S. and Hong C.K., p-i-n/n-i-p Type Planar Hybrid Structure of Highly Efficient Perovskite Solar Cells towards Improved Air Stability: Synthetic Strategies and the Role of p-Type Hole Transport Layer (HTL) and n-Type Electron Transport Layer (ETL) Metal Oxides, Nanoscale, 8, 10528-10540, 2016.
  25. Laban W.A. and Etgar L., Depleted Hole Conductor-Free Lead Halide Iodide Heterojunction Solar Cells, Energy Environ. Sci., 6, 3249-3253, 2013.
  26. Shi J., Dong J., Lv S., Xu Y., Zhu L., Xiao J., Xu X., Wu H., Li D., Luo Y., and Meng Q., Hole-Conductor-Free Perovskite Organic Lead Iodide Heterojunction Thin-Film Solar Cells: High Efficiency and Junction Property, Phys., 104, 063901, 2014.
  27. Li Y., Ye S., Sun W., Yan W., Li Y., Bian Z., Liu Z., Wang S., and Huang C., Hole-Conductor-Free Planar Perovskite Solar Cells with 16.0% Efficiency, Mater. Chem. A, 3, 18389-18394, 2015.
  28. Ke W., Fang G., Wan J., Tao H., Liu Q., Xiong L., Qin P., Wang J., Lei H., Yang G., Qin M., Zhao X., and Yan Y., Efficient Hole-Blocking Layer-Free Planar Halide Perovskite Thin-Film Solar Cells, Commun., 6, 6700, 2015.
  29. Juarez-Perez E.J., Wubetaler M., Fabregat-Santiago F., Lakus-Wollny K., Mankel E., Mayer T., Jaegermann W., and Mora-Sero I., Role of the Selective Contacts in the Performance of Lead Halide Perovskite Solar Cells, Phys. Chem. Lett., 5, 680-685, 2014.
  30. Hsiao Y.-C., Wu T., Li M., Liu Q., Qin W., and Hu B., Fundamental Physics Behind High-Efficiency Organo-Metal Halide Perovskite Solar Cells, Mater. Chem. A, 3, 15372-15385, 2015.
  31. Wang L., Sheibani E., Guo Y., Zhang W., Li Y., Liu P., Xu B., Kloo L., and Sun L., Impact of Linking Topology on the Properties of Carbazole-Based Hole-Transport Materials and Their Application in Solid-State Mesoscopic Solar Cells, RRL., 3, 2019.
  32. Burschka J., Pellet N., Moon S.J., Humphry-Baker R., Gao P., Nazeeruddin M.K., and Gratzel M., Sequential Deposition as a Route to High-Performance Perovskite-Sensitized Solar Cells, Nature, 499, 316-319, 2013.
  33. Heo J.H., Im S.H., Noh J.H., Mandal T.N., Lim C.-S., Chang J.A., Lee Y.H., Kim H.J., Sarkar A., Nazeeruddin M.K., Grätzel M., and Seok S.I., Efficient Inorganic-Organic Hybrid Heterojunction Solar Cells Containing Perovskite Compound and Polymeric Hole Conductors, Photonics, 7, 486-491, 2013.
  34. Chen H., Pan X., Liu W., Cai M., Kou D., Huo Z., Fang X., and Dai S., Efficient Panchromatic Inorganic-Organic Heterojunction Solar Cells with Consecutive Charge Transport Tunnels in Hole Transport Material, Comm., 49, 7277-7279, 2013.
  35. Cai B., Xing Y., Yang Z., Zhang W.-H., and Qiu J., High Performance Hybrid Solar Cells Sensitized by Organolead Halide Perovskites, Energy Environ. Sci., 6, 2013.
  36. Ball J.M., Lee M.M., Hey A., and Snaith H.J., Low-Temperature Processed Meso-Superstructured to Thin-Film Perovskite Solar Cells, Energy Environ. Sci., 6, 1739-1743, 2013.
  37. Green M., Dunlop E., Hohl-Ebinger J., Yoshita M., Kopidakis N., and Hao X., Solar Cell Efficiency Tables (version 57), Photovolt.: Res. Appl., 29, 3-15, 2020.
  38. Sheibani E., Yang L., and Zhang J., Conjugated Polymer for Charge Transporting Applications in Solar Cells, in Organic Electrodes: Fundamental to Advanced Emerging Applications, Springer, 119-135, 2022.
  39. Christians J.A., Fung R.C., and Kamat P.V., An Inorganic Hole Conductor for Organo-Lead Halide Perovskite Solar Cells, Improved Hole Conductivity with Copper Iodide, Am. Chem. Soc., 136, 758-764, 2014.
  40. Subbiah A.S., Halder A., Ghosh S., Mahuli N., Hodes G., and Sarkar S.K., Inorganic Hole Conducting Layers for Perovskite-Based Solar Cells, Phys. Chem., 5, 1748-1753, 2014.
  41. Wang K.C., Jeng J.Y., Shen P.S., Chang Y.C., Diau E.W., Tsai C.H., Chao T.Y., Hsu H.C., Lin P.Y., Chen P., Guo T.F., and Wen T.C., p-Type Mesoscopic Nickel Oxide/Organometallic Perovskite Heterojunction Solar Cells, Rep., 4, 4756, 2014.
  42. Jeng J.Y., Chen K.C., Chiang T.Y., Lin P.Y., Tsai T.D., Chang Y.C., Guo T.F., Chen P., Wen T.C., and Hsu Y.J., Nickel Oxide Electrode Interlayer in CH3 NH3 PbI3 Perovskite/PCBM Planar-Heterojunction Hybrid Solar Cells, Mater., 26, 4107-4113, 2014.
  43. Zhu Z., Bai Y., Zhang T., Liu Z., Long X., Wei Z., Wang Z., Zhang L., Wang J., Yan F., and Yang S., High-Performance Hole-Extraction Layer of Sol-Gel-Processed NiO Nanocrystals for Inverted Planar Perovskite Solar Cells, Chem. Int. Ed., 53, 12571-12575, 2014.
  44. Hu L., Peng J., Wang W., Xia Z., Yuan J., Lu J., Huang X., Ma W., Song H., Chen W., Cheng Y.-B., and Tang J., Sequential Deposition of CH3NH3PbI3 on Planar NiO Film for Efficient Planar Perovskite Solar Cells, ACS Photonics, 1, 547-553, 2014.
  45. Tian H., Xu B., Chen H., Johansson E.M., and Boschloo G., Solid-State Perovskite-Sensitized p-Type Mesoporous Nickel Oxide Solar Cells, ChemSusChem, 7, 2150-2153, 2014.
  46. Ito S., Tanaka S., Vahlman H., Nishino H., Manabe K., and Lund P., Carbon-Double-Bond-Free Printed Solar Cells from TiO2/CH3NH3PbI3/CuSCN/Au: Structural Control and Photoaging Effects, ChemPhysChem, 15, 1194-1200, 2014.
  47. Qin P., Tanaka S., Ito S., Tetreault N., Manabe K., Nishino H., Nazeeruddin M.K., and Gratzel M., Inorganic Hole Conductor-Based Lead Halide Perovskite Solar Cells with 12.4% Conversion Efficiency, Commun., 5, 3834, 2014.
  48. Chung I., Lee B., He J., Chang R.P., and Kanatzidis M.G., All-Solid-State Dye-Sensitized Solar Cells with High Efficiency, Nature, 485, 486-489, 2012.
  49. Molina D., Sheibani E., Yang B., Mohammadi H., Ghiasabadi M., Xu B., Suo J., Carlsen B., Vlachopoulos N., Zakeeruddin S.M., Grätzel M., and Hagfeldt A., Molecularly Engineered Low-Cost Organic Hole-Transporting Materials for Perovskite Solar Cells: The Substituent Effect on Non-Fused Three-Dimensional Systems, ACS Appl. Energy Mater., 5, 3156-3165, 2022.
  50. Li X., Haghshenas M., Wang L., Huang J., Sheibani E., Yuan S., Luo X., Chen X., Wei C., Xiang H., Baryshnikov G., Sun L., Zeng H., and Xu B., A Multifunctional Small-Molecule Hole-Transporting Material Enables Perovskite QLEDs with EQE Exceeding 20%, ACS Energy Lett., 8, 1445-1454, 2023.
  51. Bakr Z.H., Wali Q., Fakharuddin A., Schmidt-Mende L., Brown T.M., and Jose R., Advances in Hole Transport Materials Engineering for Stable and Efficient Perovskite Solar Cells, Nano Energy, 34, 271-305, 2017.
  52. Pitchaiya S., Natarajan M., Santhanam A., Asokan V., Yuvapragasam A., Madurai Ramakrishnan V., Palanisamy S.E., Sundaram S., and Velauthapillai D., A Review on the Classification of Organic/Inorganic/Carbonaceous Hole Transporting Materials for Perovskite Solar Cell Application, J. Chem., 13, 2526-2557, 2020.
  53. Santos J., Calbo J., Sandoval-Torrientes R., García-Benito I., Kanda H., Zimmermann I., Aragó J., Nazeeruddin M.K., Ortí E., and Martín N., Hole-Transporting Materials for Perovskite Solar Cells Employing an Anthradithiophene Core, ACS Appl. Mater. Interfaces, 13, 28214-28221, 2021.
  54. Feng K., Guo H., Sun H., and Guo X., n-Type Organic and Polymeric Semiconductors Based on Bithiophene Imide Derivatives, Chem. Res., 54, 3804-3817, 2021.
  55. Tang C.W., Two-Layer Organic Photovoltaic Cell, Phys., 48, 183-185, 1986.
  56. Ouedraogo N.A.N., Odunmbaku G.O., Guo B., Chen S., Lin X., Shumilova T., and Sun K., Oxidation of Spiro-OMeTAD in High-Efficiency Perovskite Solar Cells, ACS Appl. Mater. Interfaces, 14, 34303-34327, 2022.
  57. Sharma D., Mehra R., and Raj B., Comparative Study of Hole Transporting Layers Commonly Used in High-Efficiency Perovskite Solar Cells, Mater. Sci., 57, 21172-21191, 2022.
  58. Parida B., Singh A., Kalathil Soopy A.K., Sangaraju S., Sundaray M., Mishra S., Liu S., and Najar A., Recent Developments in Upscalable Printing Techniques for Perovskite Solar Cells, Sci., 9, 2200308, 2022.
  59. Hu T., Zhang M., Mei H., Chang P., Wang X., and Cheng L., 3D Printing Technology toward State-of-the-Art Photoelectric Devices, Mater. Technol., 8, 2200827, 2023.
  60. Sze P.-W., Lee K.-W., Huang P.-C., Chou D.-W., Kao B.-S., and Huang C.-J., The Investigation of High Quality PEDOT:PSS Film by Multilayer-Processing and Acid Treatment, Energies, 10, 716, 2017.
  61. Yan W., Ye S., Li Y., Sun W., Rao H., Liu Z., Bian Z., and Huang C., Hole-Transporting Materials in Inverted Planar Perovskite Solar Cells, Energy Mater., 6, 2016.
  62. Ke Q.B., Wu J.R., Lin C.C., and Chang S.H., Understanding the PEDOT:PSS, PTAA and P3CT-X Hole-Transport-Layer-Based Inverted Perovskite Solar Cells, Polymers (Basel), 14, 823, 2022.
  63. Ma S., Qiao W., Cheng T., Zhang B., Yao J., Alsaedi A., Hayat T., Ding Y., Tan Z., and Dai S., Optical-Electrical-Chemical Engineering of PEDOT:PSS by Incorporation of Hydrophobic Nafion for Efficient and Stable Perovskite Solar Cells, ACS Appl. Mater. Interfaces, 10, 3902-3911, 2018.
  64. Jeng J.Y., Chiang Y.F., Lee M.H., Peng S.R., Guo T.F., Chen P., and Wen T.C., CH3NH3PbI3 Perovskite/Fullerene Planar-Heterojunction Hybrid Solar Cells, Mater., 25, 3727-3732, 2013.
  65. Niu J., Yang D., Ren X., Yang Z., Liu Y., Zhu X., Zhao W., and Liu S., Graphene-Oxide Doped PEDOT:PSS as a Superior Hole Transport Material for High-Efficiency Perovskite Solar Cell, Electron., 48, 165-171, 2017.
  66. Wang Z.K., Li M., Yuan D.-X., Shi X.-B., Ma H., and Liao L.-S., Improved Hole Interfacial Layer for Planar Perovskite Solar Cells with Efficiency Exceeding 15%, ACS Appl. Mater. Interfaces, 7, 9645-9651, 2015.
  67. Ghanavati S. and Izadi-Vasafi H., Effect of Graphene Oxide Nanoparticles on the Physical and Mechanical Properties of Chitosan/Gelatin/Polyvinyl Alcohol Films, J. Polym. Sci. Technol. (Persian), 33, 75-87, 2020.
  68. Luo H., Lin X., Hou X., Pan L., Huang S., and Chen X., Efficient and Air-Stable Planar Perovskite Solar Cells Formed on Graphene-Oxide-Modified PEDOT:PSS Hole Transport Layer, Nano-Micro Lett., 9, 39, 2017.
  69. Wang Y., Hu Y., Han D., Yuan Q., Cao T., Chen N., Zhou D., Cong H., and Feng L., Ammonia-Treated Graphene Oxide and PEDOT:PSS as Hole Transport Layer for High-Performance Perovskite Solar Cells with Enhanced Stability, Electron., 70, 63-70, 2019.
  70. Mann D.S., Seo Y.-H., Kwon S.-N., and Na S.-I., Efficient and Stable Planar Perovskite Solar Cells with a PEDOT:PSS/SrGO Hole Interfacial Layer, Alloys Compd., 812, 152091, 2020.
  71. Wang S., Zhang Y., Abidi N., and Cabrales L., Wettability and Surface Free Energy of Graphene Films, Langmuir, 25, 11078-11081, 2009.
  72. Suzuki S. and Yoshimura M., Chemical Stability of Graphene Coated Silver Substrates for Surface-Enhanced Raman Scattering, Rep., 7, 14851, 2017.
  73. Abbasi F., Shojaei A., and Moemen Bellah S., Effect of Exfoliated Graphene Nanoplatelets on Rheological, Morphological, Mechanical and Thermal Properties of Immiscible Polypropylene/Polystyrene (PP/PS) Blends, J. Polym. Sci. Technol. (Persian), 29, 477-487, 2017.
  74. Huang W., Huang F., Gann E., Cheng Y.-B., and McNeill C.R., Probing Molecular and Crystalline Orientation in Solution-Processed Perovskite Solar Cells, Funct. Mater., 25, 5529-5536, 2015.
  75. Yeo J.-S., Yun J.-M., Jung Y.-S., Kim D.-Y., Noh Y.-J., Kim S.-S., and Na S.-I., Sulfonic Acid-Functionalized, Reduced Graphene Oxide as an Advanced Interfacial Material Leading to Donor Polymer-Independent High-Performance Polymer Solar Cells, Mater. Chem., 2, 292-298, 2014.
  76. Ma S., Liu X., Wu Y., Tao Y., Ding Y., Cai M., Dai S., Liu X., Alsaedi A., and Hayat T., Efficient and Flexible Solar Cells with Improved Stability through Incorporation of a Multifunctional Small Molecule at PEDOT:PSS/Perovskite Interface, Energy Mater. Sol. Cells, 208, 2020.
  77. Hou F., Su Z., Jin F., Yan X., Wang L., Zhao H., Zhu J., Chu B., and Li W., Efficient and Stable Planar Heterojunction Perovskite Solar Cells with an MoO3/PEDOT:PSS Hole Transporting layer, Nanoscale, 7, 9427-32, 2015.
  78. Shariff N.S.M., Saad P.S.M., and Mahmood M.R., SCAPS Simulation on P3HT: Graphene Nanocomposites Based Bulk-Heterojunction Organic Solar Cells, J. Electr. Electron. Systems Res., 9, 28-32, 2019.
  79. Rad J.K. and Mahdavian A.R., Preparation of Photoresponsive Functionalized Acrylic Nanoparticles Containing Carbazole Groups for Smart Cellulosic Papers, J. Polym. Sci. Technol.(Persian), 30, 435-446, 2017.
  80. Sirringhaus H., Tessler N., and Friend R.H., Integrated Optoelectronic Devices Based on Conjugated Polymers, Science, 280, 1741-1744, 1998.
  81. Yaghoobi Nia N., Bonomo M., Zendehdel M., Lamanna E., Desoky M.M.H., Paci B., Zurlo F., Generosi A., Barolo C., Viscardi G., Quagliotto P., and Di Carlo A., Impact of P3HT Regioregularity and Molecular Weight on the Efficiency and Stability of Perovskite Solar Cells, ACS Sustain. Chem. Eng., 9, 5061-5073, 2021.
  82. Matsumoto T., Nishi K., Tamba S., Kotera M., Hongo C., Mori A., and Nishino T., Molecular Weight Effect on Surface and Bulk Structure of Poly(3-hexylthiophene) Thin Films, Polymer, 119, 76-82, 2017.
  83. Bi D., Yang L., Boschloo G., Hagfeldt A., and Johansson E.M., Effect of Different Hole Transport Materials on Recombination in CH3NH3PbI3 Perovskite-Sensitized Mesoscopic Solar Cells, Phys. Chem. Lett., 4, 1532-1536, 2013.
  84. Jung E.H., Jeon N.J., Park E.Y., Moon C.S., Shin T.J., Yang T.Y., Noh J.H., and Seo J., Efficient, Stable and Scalable Perovskite Solar Cells Using Poly(3-hexylthiophene), Nature, 567, 511-515, 2019.
  85. Heo J.H. and Im S.H., CH3NH3PbI3/Poly-3-hexylthiophen Perovskite Mesoscopic Solar Cells: Performance Enhancement by Li-Assisted Hole Conduction, Status Solidi-Rapid Res. Lett., 8, 816-821, 2014.
  86. Cai M., Tiong V.T., Hreid T., Bell J., and Wang H., An Efficient Hole Transport Material Composite Based on Poly(3-hexylthiophene) and Bamboo-Structured Carbon Nanotubes for High Performance Perovskite Solar cells, Mater. Chem., 3, 2784-2793, 2015.
  87. Ye J., Li X., Zhao J., Mei X., and Li Q., Efficient and Stable Perovskite Solar Cells Based on Functional Graphene-Modified P3HT Hole-Transporting Layer, RSC Adv., 6, 36356-36361, 2016.
  88. Yang M.Q., Zhang N., Pagliaro M., and Xu Y.J., Artificial Photosynthesis over Graphene-Semiconductor Composites. Are We Getting Better?, Soc. Rev., 43, 8240-8254, 2014.
  89. Zhang N., Yang M.-Q., Liu S., Sun Y., and Xu Y.-J., Waltzing with the Versatile Platform of Graphene to Synthesize Composite Photocatalysts, Rev., 115, 10307-10377, 2015.
  90. Xiao J., Shi J., Liu H., Xu Y., Lv S., Luo Y., Li D., Meng Q., and Li Y., Efficient CH3NH3PbI3Perovskite Solar Cells Based on Graphdiyne (GD)-Modified P3HT Hole-Transporting Material, Energy Mater., 5, 2015.
  91. Jeong M.J., Yeom K.M., Kim S.J., Jung E.H., and Noh J.H., Spontaneous Interface Engineering for Dopant-Free Poly(3-hexylthiophene) Perovskite Solar Cells with Efficiency over 24%, Energy Environ. Sci., 14, 2419-2428, 2021.
  92. Zhao X. and Wang M., Organic Hole-Transporting Materials for Efficient Perovskite Solar Cells, Today Energy, 7, 208-220, 2018.
  93. Intaniwet A., Mills C.A., Shkunov M., Thiem H., Keddie J.L., and Sellin P.J., Characterization of Thick Film Poly(triarylamine) Semiconductor Diodes for Direct X-Ray Detection, Appl. Phys., 106, 064513, 2009.
  94. Neumann K. and Thelakkat M., Perovskite Solar Cells Involving Poly(tetraphenylbenzidine)s: Investigation of Hole Carrier Mobility, Doping Effects and Photovoltaic Properties, RSC Adv., 4, 43550-43559, 2014.
  95. Kuan C.-H., Luo G.-S., Narra S., Maity S., Hiramatsu H., Tsai Y.-W., Lin J.-M., Hou C.-H., Shyue J.-J., and Diau E.W.-G., How Can a Hydrophobic Polymer PTAA Serve as a Hole-Transport Layer for an Inverted Tin Perovskite Solar Cell?, Eng., 450, 138037, 2022.
  96. Li N., Feng A., Guo X., Wu J., Xie S., Lin Q., Jiang X., Liu Y., Chen Z., and Tao X., Engineering the Hole Extraction Interface Enables Single-Crystal MAPbI3 Perovskite Solar Cells with Efficiency Exceeding 22% and Superior Indoor Response, Energy Mater., 12, 2021.
  97. Zhang W., Smith J., Hamilton R., Heeney M., Kirkpatrick J., Song K., Watkins S.E., Anthopoulos T., and McCulloch I., Systematic Improvement in Charge Carrier Mobility of Air Stable Triarylamine Copolymers, Am. Chem. Soc., 131, 10814-10815, 2009.
  98. Yang T. Y., Jeon N. J., Shin H. W., Shin S. S., Kim Y. Y., and Seo J., Achieving Long-Term Operational Stability of Perovskite Solar Cells with a Stabilized Efficiency Exceeding 20% after 1000 h, Sci., 6, 1900528, 2019.
  99. Zhang Y., Kirs A., Ambroz F., Lin C.T., Bati A.S.R., Parkin I.P., Shapter J.G., Batmunkh M., and Macdonald T.J., Ambient Fabrication of Organic-Inorganic Hybrid Perovskite Solar Cells, Small Methods, 5, e2000744, 2021.
  100. Heo J.H., Han H.J., Lee M., Song M., Kim D.H., and Im S.H., Stable Semi-Transparent CH3NH3PbI3Planar Sandwich Solar Cells, Energy Environ. Sci., 8, 2922-2927, 2015.
  101. Park I.J., Kang G., Park M.A., Kim J.S., Seo S.W., Kim D.H., Zhu K., Park T., and Kim J.Y., Highly Efficient and Uniform 1 cm(2) Perovskite Solar Cells with an Electrochemically Deposited NiO(x) Hole-Extraction Layer, ChemSusChem, 10, 2660-2667, 2017.
  102. Wang Q., Bi C., and Huang J., Doped Hole Transport Layer for Efficiency Enhancement in Planar Heterojunction Organolead Trihalide Perovskite Solar Cells, Nano Energy, 15, 275-280, 2015.
  103. Lim K.G., Kim H.B., Jeong J., Kim H., Kim J.Y., and Lee T.W., Boosting the Power Conversion Efficiency of Perovskite Solar Cells Using Self-organized Polymeric Hole Extraction Layers with High Work Function, Mater., 26, 6461-6466, 2014.
  104. Kim Y., Jung E.H., Kim G., Kim D., Kim B. J., and Seo J., Sequentially Fluorinated PTAA Polymers for Enhancing VOC of High-Performance Perovskite Solar Cells, Energy Mater., 8, 2018.
  105. Liu Y., Liu Z., and Lee E.-C., High-Performance Inverted Perovskite Solar Cells Using Doped Poly(triarylamine) as the Hole Transport Layer, ACS Appl. Energy Mater., 2, 1932-1942, 2019.
  106. Chen B., Yu Z.J., Manzoor S., Wang S., Weigand W., Yu Z., Yang G., Ni Z., Dai X., Holman Z.C., and Huang J., Blade-Coated Perovskites on Textured Silicon for 26%-Efficient Monolithic Perovskite/Silicon Tandem Solar Cells, Joule, 4, 850-864, 2020.
  107. Zhou Z., Li X., Cai M., Xie F., Wu Y., Lan Z., Yang X., Qiang Y., Islam A., and Han L., Stable Inverted Planar Perovskite Solar Cells with Low-Temperature-Processed Hole-Transport Bilayer, Energy Mater., 7, 2017.
  108. Liu Y., Liu Z., and Lee E.-C., Dimethyl-Sulfoxide-Assisted Improvement in the Crystallization of Lead-Acetate-Based Perovskites for High-Performance Solar Cells, Mater. Chem. C, 6, 6705-6713, 2018.
  109. Wang Y., Duan L., Zhang M., Hameiri Z., Liu X., Bai Y., and Hao X., PTAA as Efficient Hole Transport Materials in Perovskite Solar Cells: A Review, RRL., 6, 2200234, 2022.
  110. Butsriruk K., Passokorn P., Taychatanapat T., and Chatraphorn S., Surface Treatment of PTAA Hole Transport Layer for Inverted Perovskite Solar Cells, Phys. Conf. Ser., 2431, 012045, 2023.
  111. Wang C., Su Z., Chen L., Zhang H., Hui W., Liang D., Zheng G., Zhang L., Tang Z., Wen W., Tang J., Huang Q., Song F., Chen Q., and Gao X., MoO3 Doped PTAA for High-Performance Inverted Perovskite Solar Cells, Surf. Sci., 571, 151301, 2022.
  112. Agbolaghi S., Mohammadi-Vanyar O., and Abbaspoor S., Stabilization of Polymer Solar Cells and Their Importance in Photovoltaic Systems, J. Polym. Sci. Technol.(Persian), 34, 100-130, 2021.
  113. Yao Y., Cheng C., Zhang C., Hu H., Wang K., and De Wolf S., Organic Hole-Transport Layers for Efficient, Stable, and Scalable Inverted Perovskite Solar Cells, Mater., 34, 2203794, 2022.
  114. Zhao D., Sexton M., Park H.Y., Baure G., Nino J.C., and So F., High-Efficiency Solution-Processed Planar Perovskite Solar Cells with a Polymer Hole Transport Layer, Energy Mater., 5, 1401855, 2015.
  115. Liu Z., Li S., Wang X., Cui Y., Qin Y., Leng S., Xu Y.-X., Yao K., and Huang H., Interfacial Engineering of Front-Contact with Finely Tuned Polymer Interlayers for High-Performance Large-Area Flexible Perovskite Solar Cells, Nano Energy, 62, 734-744, 2019.
  116. Isikgor F.H., Subbiah A.S., Eswaran M.K., Howells C.T., Babayigit A., De Bastiani M., Yengel E., Liu J., Furlan F., and Harrison G.T., Scaling-up Perovskite Solar Cells on Hydrophobic Surfaces, Nano Energy, 81, 105633, 2021.
  117. Bi C., Wang Q., Shao Y., Yuan Y., Xiao Z., and Huang J., Non-Wetting Surface-Driven High-Aspect-Ratio Crystalline Grain Growth for Efficient Hybrid Perovskite Solar Cells, Commun., 6, 7747, 2015.
  118. Petrović M., Maksudov T., Panagiotopoulos A., Serpetzoglou E., Konidakis I., Stylianakis M.M., Stratakis E., and Kymakis E., Limitations of a Polymer-Based Hole Transporting Layer for Application in Planar Inverted Perovskite Solar Cells, Nanoscale Adv., 1, 3107-3118, 2019.
  119. Zhao D., Sexton M., Park H.-Y., Baure G., Nino J.C., and So F., High-Efficiency Solution-Processed Planar Perovskite Solar Cells with a Polymer Hole Transport Layer, Energy Mater., 5, 2015.
  120. Kim G.-W., Kim J., Lee G.-Y., Kang G., Lee J., and Park T., A Strategy to Design a Donor-π-Acceptor Polymeric Hole Conductor for an Efficient Perovskite Solar Cell, Energy Mater., 5, 2015.
  121. Li X., Wang Y. C., Zhu L., Zhang W., Wang H. Q., and Fang J., Improving Efficiency and Reproducibility of Perovskite Solar Cells through Aggregation Control in Polyelectrolytes Hole Transport Layer, ACS Appl. Mater. Interfaces, 9, 31357-31361, 2017.
  122. Deshmukh K.D., Prasad S.K., Chandrasekaran N., Liu A.C., Gann E., Thomsen L., Kabra D., Hodgkiss J.M., and McNeill C.R., Critical Role of Pendant Group Substitution on the Performance of Efficient All-Polymer Solar Cells, Mater., 29, 804-816, 2017.
  123. Sun X., Deng X., Li Z., Xiong B., Zhong C., Zhu Z., Li Z., and Jen A.K., Dopant-Free Crossconjugated Hole-Transporting Polymers for Highly Efficient Perovskite Solar Cells, Sci., 7, 1903331, 2020.
  124. Sun X., Li Z., Yu X., Wu X., Zhong C., Liu D., Lei D., Jen A. K., Li Z., and Zhu Z., Efficient Inverted Perovskite Solar Cells with Low Voltage Loss Achieved by a Pyridine-Based Dopant-Free Polymer Semiconductor, Chem. Int. Ed., 60, 7227-7233, 2021.
  125. Xu B., Sheibani E., Liu P., Zhang J., Tian H., Vlachopoulos N., Boschloo G., Kloo L., Hagfeldt A., and Sun L., Carbazole-Based Hole-Transport Materials for Efficient Solid-State Dye-Sensitized Solar Cells and Perovskite Solar Cells, Mater., 26, 6629-6634, 2014.
  126. Xu Y., Niu Q., Zhang L., Yuan C., Ma Y., Hua W., Zeng W., Min Y., Huang J., and Xia R., Highly Efficient Perovskite Solar Cell Based on PVK Hole Transport Layer, Polymers (Basel). 14, 2249, 2022.
  127. Xu X., Ji X., Chen R., Ye F., Liu S., Zhang S., Chen W., Wu Y., and Zhu W. H., Improving Contact and Passivation of Buried Interface for High-Efficiency and Large-Area Inverted Perovskite Solar Cells, Funct. Mater., 32, 2021.
  128. Guo Y., He L., Guo J., Guo Y., Zhang F., Wang L., Yang H., Xiao C., Liu Y., Chen Y., Yao Z., and Sun L., A Phenanthrocarbazole-Based Dopant-Free Hole-Transport Polymer with Noncovalent Conformational Locking for Efficient Perovskite Solar Cells, Chem. Int. Ed., 61, e202114341, 2022.
  129. Wan L., Zhao Y., Tan Y., Lou L., and Wang Z.-S., Isomeric Effect of Meta and Para Indolocarbazole-Based Hole Transporting Materials on the Performance of Inverted Perovskite Solar Cells, Eng., 455, 140569, 2023.