بررسی تجربی رفتار سایش چرخ‌دنده‌های نانوکامپوزیتی بر پایه پلی‌استال

نوع مقاله : پژوهشی

نویسندگان

1 1- دانشگاه تبریز، دانشکده مهندسی مکانیک، گروه مهندسی ساخت و تولید، کد پستی 5166616471، 2- تهران، دانشگاه فنی و حرفه‌ای، گروه مهندسی مکانیک، صندوق 143576137

2 دانشگاه تبریز، دانشکده مهندسی مکانیک، گروه مهندسی ساخت و تولید، کد پستی 5166616471

چکیده

فرضیه: در این پژوهش، اثر به‌‌کارگیری نانوذرات دوده (CB) و کلسیم کربنات‌ رسوبی (NPCC) بر رفتار سایشی، گرمایی و شکل‌شناسی در چرخ‌دنده‌های نانوکامپوزیتی بر پایه پلی‌استال (POM) به‌طور تجربی مطالعه شد. پلی‌استال از جمله مواد مهندسی پرکاربرد برای ساخت چرخ‌دنده است. با‌ ‌وجود این، از ضعف‌های عمده آن مقاومت گرمایی و استحکام ضربه‌ای شکاف‌دار نسبتاً کم و حساسیت به پرتو فرابنفش است. افزودن نانوذرات دوده به پلی‌استال، می‌تواند به‌صورت هم‌زمان استحکام کششی و چقرمگی و مقاومت به پرتو فرابنفش پلی‌استال را افزایش دهد. 
روش‌ها: نمونه‌های چرخ‌دنده‌ای نانوکامپوزیتی بر پایه آمیخته پلی‌استال دارای %0.42 وزنی تقویت‌کننده نانوذرات دوده و  نانوذرات کلسیم کربنات‌ (1.5، 3 و %4.5 وزنی) با روش اکسترودر و قالب‌گیری تزریقی تولید شدند. بررسی شکل‌شناسی و مطالعه نانوساختار با آزمون‌های میکروسکوپی الکترونی پویشی انجام شد. عملکرد گران‌روکشسانی نانوکامپوزیت‌ها با آزمون دینامیکی مکانیکی گرمایی مطالعه شد. عملکرد چرخ‌دنده‌ای نانوکامپوزیت‌ها با دستگاه آزمون چرخ‌دنده، ارزیابی شد. در آزمون چرخ‌دنده، پارامترهای دما و سایش ارزیابی شدند. سطح سایش دنده در مرحله شکست با به‌کارگیری میکروسکوپ الکترونی پویشی بررسی شد و سازوکارهای سایش آن مطالعه شد.  
یافته‌ها: افزودن هم‌زمان هر دو نوع نانوذرات به پلی‌استال موجب کاهش مقدار سایش تا %58 نسبت به پلی‌استال خالص شد. دمای سطح دنده، در تعداد دور یکسان، با به‌کارگیری نانوذرات دوده و ‌کلسیم کربنات کاهش یافت. کاهش دمای سطح دنده در نمونه‌های نانوکامپوزیتی در مقایسه با نمونه پلیمری خالص، به‌ افزایش مدول ذخیره و بهبود رفتار کشسانی، کاهش نسبت میرایی (رفتار گران‌رو) و نیز کاهش ضریب اصطکاک و افزایش انتقال گرما با به‌کارگیری نانوذرات نسبت داده شد. به‌کارگیری %4.5 وزنی نانوذرات‌ کلسیم کربنات به‌همراه دوده، باعث ایجاد ترک و گسترش سایش خراشی و جریان مواد در بخش گام دنده شد. 

کلیدواژه‌ها


عنوان مقاله [English]

Experimental Study on Wear Behavior of Polyacetal Nanocomposite Gears

نویسندگان [English]

  • Rasool Mohsenzadeh 1
  • Karim Shelesh-Nezhad 2
  • Tajbakhsh Navid Chakherlou 2
1 Division of Plastics and Composites Engineering, Department of Mechanical Engineering, University of Tabriz, Postal Code 5166616471, Tabriz, Iran
2 Division of Plastics and Composites Engineering, Department of Mechanical Engineering, University of Tabriz, Postal Code 5166616471, Tabriz, Iran
چکیده [English]

Hypothesis: The effect of incorporation of carbon black nanoparticles (CB) and nano-precipitated calcium carbonate (NPCC) on wear behavior, thermal behavior and morphology in polyacetal (POM)-based nanocomposite gears has been studied. Polyacetal is one of the widely used engineering materials for manufacturing the gears. Nevertheless, heat resistance and relatively low crack impact strength and sensitivity to UV are the major disadvantage of POM. Adding carbon black nanoparticles into the polyacetal can simultaneously increase the tensile strength and toughness and increase the UV resistance of the polyacetal. In addition, the presence of NPCC in the POM/CB can lead to improvements in CB dispersibility, increase of wear and thermal resistance.
Methods: POM/CB/NPCC nanocomposite gears containing 0.42% (by wt) carbon black and different fractions (1.5%, 3% and 4.5% all by wts) of NPCC were produced by utilizing a twin-screw extruder and injection molding machine. Morphology and nanostructure were investigated by applying scanning electron microscopy. The gear performance of nanocomposites was examined by applying a gear test rig. Gear tests were performed in the mode constant loading. The temperature and wear of the gears were evaluated in the gear tests. 
Findings: The simultaneous addition of both types of nanoparticles to polyacetal led to a reduction in the amount of wear by 58% compared to pure polyacetal. The temperature of the gear surface, in the same number of revolutions, was reduced using CB and NPCC nanoparticles. The decrease in the temperature of the nanocomposite tooth surface compared to pure POM was attributed to the increase in storage modulus and improvement in elastic behavior, decrease in damping ratio, as well as decrease in friction coefficient and increase in heat transfer in presence of nanoparticles. The use of 4.5% (by wt) of NPCC nanoparticles caused cracks and expansion of wear and material flow in the gear pitch zone.

کلیدواژه‌ها [English]

  • Gear wear analysis
  • POM
  • carbon black
  • calcium carbonate
  • morphology
  1. Pogačnik A. and Tavčar J., An Accelerated Multilevel Test and Design Procedure for Polymer Gears, Mater. Des., 65, 961-973, 2015.
  2. Mao K., Li W., Hooke C., and Walton D., Friction and Wear Behaviour of Acetal and Nylon Gears, Wear, 267, 639-645, 2009.
  3. Terashima K., Tsukamoto N., and Nishida N., Development of Plastic Gears for Power Transmission: Design on Load-Carrying Capacity, JSME Int. J. B-Fluid Thermal Eng., 29, 1326-1329, 1986.
  4. Sinha S.K. and Briscoe B.J., Polymer Tribology, 1st ed, World Scientific, 243-251, New Jersey 2009.
  5. Lu Z., Liu H., Zhu C., Song H., and Yu G., Identification of Failure Modes of a Peek-Steel Gear Pair under Lubrication, Int. J. Fatigue, 125, 342-348, 2019.
  6. Düzcükoğlu H., Study on Development of Polyamide Gears for Improvement of Load-Carrying Capacity, Tribol. Int., 42, 1146-1153, 2009.
  7. İmrek H., Performance Improvement Method for Nylon 6 Spur Gears, Tribol. Int., 42, 503-510, 2009.
  8. Mohsenzadeh R., Shelesh-Nezhad K., and Chakherlou T., Experimental and Finite Element Analysis on the Performance of Polyacetal/Carbon Black Nanocomposite Gears, Tribol. Int., 160, 107055, 2021.
  9. Singh P.K. and Singh A.K., An Investigation on the Thermal and Wear Behavior of Polymer Based Spur Gears, Tribol. Int., 118, 264-272, 2018.
  10. Mao K., Greenwood D., Ramakrishnan R., Goodship V., Shrouti C., Chetwynd D., and Langlois P., The Wear Resistance Improvement of Fibre Reinforced Polymer Composite Gears, Wear, 426, 1033-1039, 2019.
  11. Senthilvelan S. and Gnanamoorthy R., Influence of Reinforcement on Composite Gear Metrology, Mech. Mach. Theory, 43, 1198-1209, 2008.
  12. Ansari R. and Hassanzadeh-Aghdam M., Micromechanical Investigation of Creep-Recovery Behavior of Carbon Nanotube-Reinforced Polymer Nanocomposites, Int. J. Mech. Sci, 115, 45-55, 2016.
  13. Anand A., Banerjee P., Sahoo D., Rathore D.K., Prusty R.K., and Ray B.C., Effects of Temperature and Load on the Creep Performance of CNT Reinforced Laminated Glass Fiber/Epoxy Composites, Int. J. Mech. Sci., 150, 539-547, 2019.
  14. Mohsenzadeh R., Shelesh-Nezhad K., and Chakherlou T.N., Experimental and Finite Element Analysis on the Performance of Polyacetal/Carbon Black Nanocomposite Gears, Tribol. Int., 160, 107055, 2021.
  15. Mohsenzadeh R. and Fathi A., Evaluation of the Impact Resistance of POM/TPU/CB Three-Phase Nanocomposite for Application in Bumper Bracket, Iran. J. Polym. Sci Technol. (Persian), 34, 557-568, 2022.
  16. Mohsenzadeh R., Shelesh-Nezhad K., Chakherlou T.N., and Yaghini H.H., Gear Life and Failure Mode Versus Meshing Stress in Polyacetal/Carbon Black Nanocomposite Gears, Eng. Fail. Anal., 131, 105859, 2022.
  17. Mohsenzadeh R., Soudmand B.H., and Shelesh-Nezhad K., A Combined Experimental-Numerical Approach for Life Analysis and Modeling of Polymer-Based Ternary Nanocomposite Gears, Tribol. Int., 173, 107654, 2022.
  18. Mohsenzadeh R., Soudmand B.H., and Shelesh-Nezhad K., Load-Bearing Analysis of Polymer Nanocomposite Gears Using a Temperature-Based Step Loading Technique: Experimental and Numerical Study, Wear, 514-515, 204595, 2023.
  19. Soudmand B. and Shelesh-Nezhad K., Failure and Wear Analysis of Poly(butylene terephthalate) Nanocomposite Spur Gears, Tribol. Int., 151, 106439, 2020.
  20. Gao X., Qu C., and Fu Q., Toughening Mechanism in Polyoxymethylene/Thermoplastic Polyurethane Blends, Polym. Int., 53, 1666-1671, 2004.
  21. Gojny F.H., Wichmann M.H.G., Köpke U., Fiedler B., and Schulte K., Carbon Nanotube-Reinforced Epoxy-Composites: Enhanced Stiffness and Fracture Toughness at Low Nanotube Content, Compos. Sci. Technol., 64, 2363-2371, 2004.
  22. Gubbels F., Jérôme R., Teyssie P., Vanlathem E., Deltour R., Calderone A., Parente V., and Brédas J.-L., Selective Localization of Carbon Black in Immiscible Polymer Blends: A Useful Tool to Design Electrical Conductive Composites, Macromdecules, 27, 1972-1974, 1994.
  23. Gashti M.P., Allahyary H., Nasraei P., and Gashti M.P., SiO2-Kaolinite Affecting the Surface Properties of Ternary Poly(vinyl chloride)/Silica/Kaolinite Nanocomposites, Fibers Polym., 14, 1870-1876, 2013.
  24. Lohar G.S. and Jogi B.F., Influence of Carbon Black (CB) on Mechanical Behaviour and Microscopic Analysis of Poly-propylene (PP)/Acrylonitrile-Butadiene-Styrene (ABS) Nanocomposites, Procedia Manuf., 20, 85-90, 2018.
  25. Mohsenzadeh R., Soudmand B.H., and Shelesh-Nezhad K., Synergetic Impacts of Two Rigid Nano-Scale Inclusions on the Mechanical and Thermal Performance of POM/Carbon Black/CaCO3 Ternary Nanocomposite Systems, Polym. Compos., 43, 3041-3056, 2022.
  26. Lin Y., Chen H., Chan C.-M., and Wu J., The Toughening Mechanism of Polypropylene/Calcium Carbonate Nanocomposites, Polymer, 51, 3277-3284, 2010.
  27. Kemal I., Whittle A., Burford R., Vodenitcharova T., and Hoffman M., Toughening of Unmodified Polyvinylchloride through the Addition of Nanoparticulate Calcium Carbonate, Polymer, 50, 4066-4079, 2009.
  28. Mohsenzadeh R., Majidi H., Soltanzadeh M., and Shelesh-Nezhad K., Wear and Failure of Polyoxymethylene/Calcium Carbonate Nanocomposite Gears, Proc. Inst. Mech. Eng. J: J. Eng. Tribol., 234, 811-820, 2019.
  29. Soltanzadeh M., Salari F., Shelesh-Nezhad K., and Mohsenzadeh R., Experimental Studies on Mechanical Properties and Thermal Behavior of Polyoxymethylene/CaCO3 Nanocomposites, Iran. J. Polym. Sci. Technol. (Persian), 27, 51-62, 2014.
  30. Johnson J., Introduction to Fluid Power, 1st ed., Cengage Learning, Boston, 63-65, 2002.
  31. Standard Verein Deutscher Ingenieure V.P., Thermoplastic Gear Wheels, Cylindrical Gears, Calculation of the Load-Carrying Capacity, Vdi-Richtlinien, 2014.
  32. Gojny F., Wichmann M., Köpke U., Fiedler B., and Schulte K., Carbon Nanotube-Reinforced Epoxy-Composites: Enhanced Stiffness and Fracture Toughness at Low Nanotube Content, Compos. Sci. Technol., 64, 2363-2371, 2004.
  33. Singh R., Zhang M., and Chan D., Toughening of a Brittle Thermosetting Polymer: Effects of Reinforcement Particle Size and Volume Fraction, J. Mater. Sci., 37, 781-788, 2002.
  34. Zhang B.Y., Xu L., Guo Z.X., Yu J., and Nagai S., Effects of Glass Fiber on the Properties of Polyoxymethylene/Thermoplastic Polyurethane/Multiwalled Carbon Nanotube Composites, Polym. Compos., 38, 1319-1326, 2017.
  35. Chan C.-M., Wu J., Li J.-X., and Cheung Y.-K., Polypropylene/Calcium Carbonate Nanocomposites, Polymer, 43, 2981-2992, 2002.
  36. Kiss A., Fekete E., and Pukánszky B., Aggregation of CaCO3 Particles in PP Composites: Effect of Surface Coating, Compos. Sci. Technol. (Persian), 67, 1574-1583, 2007.
  37. Karamipour S., Ebadi-Dehaghani H., Ashouri D., and Mousavian S., Effect of Nano-CaCO3 on Rheological and Dynamic Mechanical Properties of Polypropylene: Experiments and Models, Polym. Test., 30, 110-117, 2011.
  38. Ferry J.D., Viscoelastic Properties of Polymers, 1st ed., John Wiley and Sons, New York, 12-16, 1980.
  39. Gu H., Dynamic Mechanical Analysis of the Seawater Treated Glass/Polyester Composites, Mater. Des., 30, 2774-2777, 2009.
  40. Chopra S., Batthula S., Deshmukh K., and Peshwe D., Tribological Behaviour of Multi-Walled Carbon Nanotubes (MWCNT) Filled Polybutylene Terephthalate (PBT) Nanocomposites, Trans. Indian Inst. Met., 70, 801-807, 2017.
  41. Mu B., Wang Q., Wang T., Wang H., Jian L., and Pei X., Preparation and Friction Properties of PBT/MMT Composites, Polym. Compos, 30, 619-628, 2009.
  42. Zhaohong X., Zhenhua L., Jian L., and Fei F.Y., The Effect of CF and Nano-SiO2 Modification on the Flexural and Tribological Properties of POM Composites, J. Thermoplast. Compos. Mater, 27, 287-296, 2014.
  43. Frormann L., Iqbal A., and Abdullah S.A., Thermo-Viscoelastic Behavior of PCNF-Filled Polypropylene Nanocomposites, J. Appl. Polym. Sci., 107, 2695-2703, 2008.
  44. Vakili M., Ebadi-Dehaghani H., and Haghshenas-Fard M., Crystallization and Thermal Conductivity of CaCO3 Nanoparticle Filled Polypropylene, J. Macromol. Sci., 50, 1637-1645, 2011.
  45. Mohsenzadeh R., Development of Stress Distribution of Composite Gear Tooth Reinforced by Nano-CaCO3, Using Finite Element Analysis and Its Correlation with Experience, J. Fail. Anal. Prev., 22, 1495-1503, 2022.
  46. Walton D. and Shi Y., A Comparison of Ratings for Plastic Gears, Proc. Inst. Mech. Eng. C: J. Mech. Eng. Sci., 203, 31-38, 1989.
  47. Senthilvelan S. and Gnanamoorthy R., Effect of Gear Tooth Fillet Radius on the Performance of Injection Molded Nylon 6/6 Gears, Mater. Des., 27, 632-639, 2006.
  48. Mohsenzadeh R., Experimental Studies on Mechanical Properties and Toughening Mechanisms of PA6/Zeolite Nanocomposites, Proc. Inst. Mech. Eng. C: J. Mech. Eng. Sci., 235, 7233-7240, 2021.
  49. Mohsenzadeh R., Experimental Studies on the Tribology Behavior of Ultra-High Molecular Weight Polyethylene/Zeolite Nanocomposite, Amirkabir J. Mech. Eng., 53, 5159-5168, 2021.
  50. Soudmand B., Shelesh-Nezhad K., and Hassanifard S., Toughness Evaluation of Poly(butylene terephthalate) Nanocomposites, Theor. Appl. Fract. Mech, 108, 102662, 2020.
  51. Tanniru M. and Misra R., On Enhanced Impact Strength of Calcium Carbonate-Reinforced High-Density Polyethylene Composites, Mater. Sci. Eng. A, 405, 178-193, 2005.
  52. Mohsenzadeh R., Soudmand B., and Shelesh-Nezhad K., Failure Analysis of POM Ternary Nanocomposites for Gear Applications: Experimental and Finite Element Study, Eng. Fail. Anal., 140, 106606, 2022.
  53. Afshar A., Massoumi I., Khosh R.L., and Bagheri R., Fracture Behavior Dependence on Load-Bearing Capacity of Filler in Nano- and Microcomposites of Polypropylene Containing Calcium Carbonate, Mater. Des., 31, 802-807, 2010.