آخرین پیشرفت‌ها درآب‌کافت اسیدی برای تولید نانوبلورهای سلولوز به‌عنوان جزء تقویت‌کننده در نانوکامپوزیت‌های پایه‌اپوکسی

نوع مقاله : مروری

نویسندگان

1 اصفهان، دانشگاه صنعتی اصفهان، دانشکده مهندسی نساجی، کد پستی 83111-84156

2 اصفهان، دانشگاه صنعتی اصفهان، دانشکده مهندسی مکانیک ، کد پستی 83111-84156

3 کرج، شرکت مهندسی و ساخت ژنراتور مپنا، کد پستی 335-31775

چکیده

سلولوز به‌عنوان یکی از فراوان‌ترین پلیمرهای طبیعی با گستره وسیعی از کاربردها، توجه پژوهشگران زیادی را جلب کرده است. ساختارهای بر پایه سلولوز مانند نانوبلورهای سلولوز و نانوکامپوزیت‌های ساخته‌شده از آن‌ها از جمله مواد پرکاربرد در بسیاری از زمینه‌ها شناخته شده‌اند. تقاضا برای توسعه، تولید و استفاده از ساختارهای بر پایه سلولوز و کسب دانش مربوط به آن‌ها به‌سرعت در حال افزایش است. از این‌رو در مقاله پیش رو، آخرین تحولات برای تولید نانوبلورهای سلولوز، خواص و روش‌های پراکنش آن‌ها در ماتریس رزین اپوکسی به‌منظور دستیابی به خواص نهایی مطلوب در ساختار نانوکامپوزیت اپوکسی-نانوبلورهای سلولوز بحث شده‌ است. ابتدا، نانوبلورهای سلولوز ، به‌عنوان یکی از پراستنادترین نانومواد زیست‌تخریب‌پذیر و فراوان در طبیعت ‌معرفی شدند. پس از آن، روش‌های مختلف تولید نانوبلورهای سلولوز به‌تفصیل شرح داده شده است. در ادامه، با اشاره به کاربردهای مختلف نانوبلورهای سلولوز در بسیاری از زمینه‌ها، آب‌کافت اسیدی به‌عنوان یکی از کاربردی‌ترین و کم‌هزینه‌ترین روش‌های تولید این نانوذرات توضیح داده شده و به عوامل مؤثر بر این فرایند مانند منبع سلولوز، زمان و دمای فرایند آب‌کافت اسیدی و غلظت و نوع اسید مصرفی نیز اشاره شده است. پدیده کلوخگی و چگونگی دستیابی به پراکنش مطلوب نانوبلورهای سلولوز در ماتریس اپوکسی به‌عنوان یکی از چالش‌های اساسی در تولید نانوکامپوزیت‌های نانوبلورهای سلولوز-اپوکسی معرفی شده است. در همین راستا، به انواع روش‌های اصلاح سطح شیمیایی نانوبلورهای سلولوز اشاره شده است. در نهایت، اختلاف نظر پژوهشگران در زمینه انتخاب بهترین روش افزودن نانوبلورهای سلولوز به ساختار اپوکسی شرح داده شده است. با توجه به تقاضای رو به رشد استفاده از نانوکامپوزیت‌های کارآمد، پژوهش‌ها در این زمینه همچنان ادامه دارد. بنابراین، با ارائه بحث جامعی از آخرین پژوهش‌ها در این زمینه، سعی شده است دستاوردهای جدید پژوهشگران و روش‌های غلبه بر چالش‌های مربوط بررسی شود. مهم‌ترین دستاورد پژوهشگران، تأکید بر استفاده از محیط پراکنش مناسب با درنظرگرفتن انرژی سطحی نانوبلورهای سلولوز به‌منظور تولید نانوکامپوزیت‌هایی با خواص مکانیکی و ترمودینامیکی مطلوب است. 

کلیدواژه‌ها


عنوان مقاله [English]

Latest Advances in Acid Hydrolysis Technique for Production of Cellulose Nanocrystals (CNCs) as Reinforcing Component in Epoxy-Based Nanocomposites

نویسندگان [English]

  • Reyhaneh Laghaei 1
  • Hossein Fashandi 1
  • Sayyed Mahdi Hejazi 1
  • Saleh Akbarzadeh 2
  • ُSamira Shaghaghi 3
  • Alireza Shamaei-Kashani 3
  • Bijan Jahanara 3
  • Elaheh Shahsavari 3
1 Department of Textile Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
2 Department of Mechanical Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
3 Mapna Pars Generator Co., Karaj, 31775-335, Iran
چکیده [English]

Cellulose, as one of the most abundant natural polymers with a wide spectrum of applications, has drawn the attention of many researchers. In this regard, cellulose-base structures such as cellulose nanocrystals (CNCs) and nanocomposites are known as materials widely used in many fields. Therefore, development, production and use of cellulose-based structures by gaining the relevant insights are progressively increasing. In the present paper, the latest developments in the field of various extraction techniques of CNCs, their properties and dispersion methods in epoxy matrix to obtain desired mechanical properties in cellulose nano-crystals/epoxy nanocomposite structures are reviewed. First, cellulose nanocrystals are introduced as one of the most promising biodegradable and abundant nanomaterials widely used in various industries. The various production techniques of cellulose nanocrystals are briefly reviewed. Based on the various applications of cellulose nanocrystals in many fields, cellulose acid hydrolysis as one of the most practical and low-cost methods for cellulose nanocrystals preparation is described in details. In this regard, the source of cellulose, time and temperature of the acid hydrolysis, the concentration and type of acid as important factors of the hydrolysis process are investigated. Reinforcing epoxy-based nanocomposites using cellulose nanocrystals is the subject of another section. Dealing with problems associated with cellulose nanocrystals agglomeration phenomenon, the main challenge to achieve a homogeneous dispersion of cellulose nanocrystals within the epoxy matrix, is also thoroughly discussed. In this regard, various methods of chemical surface modification of cellulose nanocrystals are investigated. Finally, considering the investigated cases, the debate on the issue of appropriate methods for dispersing cellulose nanocrystals in the epoxy-based resin is comprehensively covered. It can be said that based on growing demands for high performance cellulose nanocrystals/epoxy nanocomposite structures, research on this field is ongoing. Therefore, in the present review, by providing a comprehensive discussion on the latest researche works conducted in this field, it has been attempted to present the new achievements of researchers and approaches to overcome the involved challenges. The most important achievement of researchers is the emphasis on selection of appropriate dispersion medium considering the cellulose nanocrystals surface energy to produce nanocomposites with suitable mechanical and thermomechanical properties. 

کلیدواژه‌ها [English]

  • cellulose nanocrystals
  • acid hydrolysis
  • epoxy
  • nanocomposite
  • particles distribution
  1. Chang C-P., Wang I-C., Hung K-J., and Perng Y-S, Preparation and Characterization of Nanocrystalline Cellulose by Acid Hydrolysis of Cotton Linter, Taiwan J. Sci., 25, 251-64, 2010.
  2. Taheri N., Abdolmaleki A., and Fashandi H., Pyridinium-Based Ionic Liquid/Water Mixture Intended for Efficient Dissolution of Cellulose, Chitosan and Chitin: The Pivotal Contribution of Water, Polym., 195, 413-419, 2018.
  3. Kaushik M., Basu K., Benoit C., Cirtiu C., Vali H., and Moores A., Cellulose Nanocrystals as Chiral Inducers: Enantioselective Catalysis and Transmission Electron Microscopy 3D Characterization, Am. Chem. Soc., 137, 6124-6127, 2015.
  4. Rana A., Frollini E., and Thakur V., Cellulose Nanocrystals: Pretreatments, Preparation Strategies, and Surface Functionalization, Biolog. Macromol., 182, 1554-1581, 2021.
  5. Karak N., Sustainable Epoxy Thermosets and Nanocomposites, in Nanocomposites of Epoxy and Cellulosic Nanomaterials, ACS, Chapt. 8, 235-265, 2021.
  6. Siqueira G., Bras J., and Dufresne A., Cellulosic Bionanocomposites: A Review of Preparation, Properties and Applications, Polymers, 2, 728-765, 2010.
  7. Mali P. and Sherje A.P., Cellulose Nanocrystals: Fundamentals and Biomedical Applications, Polym., 275, 118668, 2022.
  8. Kaushik M., Fraschini C., Chauve G., Putaux J.-L., and Moores A., Transmission Electron Microscopy for the Characterization of Cellulose Nanocrystals, The Transmission Electron Microscope-Theory and Applications, 1st ed, Pakistan Institute of Nuclear, Pakistan, 130-163, 2015.
  9. Domingues R.M., Gomes M.E., and Reis R.L., The Potential of Cellulose Nanocrystals in Tissue Engineering Strategies, Biomacromolecules, 15, 2327-2346, 2014.
  10. Dong S. and Roman M., Fluorescently Labeled Cellulose Nanocrystals for Bioimaging Applications, Am. Chem. Soc., 129, 13810-13811, 2007.
  11. Mariano M., El Kissi N., and Dufresne A., Cellulose Nanocrystals and Related Nanocomposites: Review of Some Properties and Challenges, Polym. Sci. Part B: Polym. Phys., 52, 791-806, 2014.
  12. Zeng J., An Experimental Study on Tensile Properties of Cellulose Nanocrystal Reinforced Epoxy Nanocomposite Material, MSc Thesis, Oregon State University, Oregon, USA, 2009.
  13. Charreau H., Foresti M.L., and Vazquez A., Nanocellulose Patents Trends: A Comprehensive Review on Patents on Cellulose Nanocrystals, Microfibrillated and Bacterial Cellulose, Recent Patents on Nanotechnology, 7, 56-80, 2013.
  14. Vanderfleet O.M. and Cranston E.D., Production Routes to Tailor the Performance of Cellulose Nanocrystals, Nature Rev. Mater., 6, 124-144, 2021.
  15. Eyley S. and Thielemans W., Surface Modification of Cellulose Nanocrystals, Nanoscale, 6, 7764-7779, 2014.
  16. Habibi Y., Lucia L.A., and Rojas O.J., Cellulose Nanocrystals: Chemistry, Self-Assembly, and Applications, Rev., 110, 3479-3500, 2010.
  17. Grishkewich N., Mohammed N., Tang J., and Tam K.C., Recent Advances in the Application of Cellulose Nanocrystals, Current Opin. Colloid Interface Sci., 29, 32-45, 2017.
  18. Trache D., Hussin M.H., Haafiz M.K.M., and Thakur V.K., Recent Progress in Cellulose Nanocrystals: Sources and Production, Nanoscale, 9, 1763-1786, 2017.
  19. Xie H., Du H., Yang X., and Si C., Recent Strategies in Preparation of Cellulose Nanocrystals and Cellulose Nanofibrils Derived from Raw Cellulose Materials, J. Polym. Sci., 2018, 7923068, 2018.
  20. Reid M.S., Villalobos M., and Cranston E.D., Benchmarking Cellulose Nanocrystals: From the Laboratory to Industrial Production, Langmuir, 33, 1583-1598, 2017.
  21. Ng H.-M., Sin L.T., Tee T-T., Bee S-T., Hui D., Low C-Y., and Rahmat A.R., Extraction of Cellulose Nanocrystals from Plant Sources for Application as Reinforcing Agent in Polymers, Part B: Eng.,75, 176-200, 2015.
  22. Jonoobi M., Oladi R., Davoudpour Y., Oksman K., Dufresne A., Hamzeh Y., and Davoodi R., Different Preparation Methods and Properties of Nanostructured Cellulose from Various Natural Resources and Residues: A Review, Cellulose, 22, 935-969, 2015.
  23. Lin N., Huang J., and Dufresne A., Preparation, Properties and Applications of Polysaccharide Nanocrystals in Advanced Functional Nanomaterials: A Review, Nanoscale, 4, 3274-3294, 2012.
  24. Parker R.M., Guidetti G., Williams C.A., Zhao T., Narkevicius A., Vignolini S., and Frka-Petesic B., The Self-Assembly of Cellulose Nanocrystals: Hierarchical Design of Visual Appearance, Mater., 30, 1704477, 2018.
  25. Shojaeiarani J., Bajwa D., and Shirzadifar A., A Review on Cellulose Nanocrystals as Promising Biocompounds for the Synthesis of Nanocomposite Hydrogels, Polym., 216, 247-259, 2019.
  26. Razali S.A., Sidik N.A.C., and Koten H., Cellulose Nanocrystals: A Brief Review on Properties and General Applications, Adv. Res. Des., 60, 1-15, 2019.
  27. Huang S., Liu X., Chang C., and Wang Y., Recent Developments and Prospective Food-Related Applications of Cellulose Nanocrystals: A Review, Cellulose, 27, 2991-3011, 2020.
  28. Nasseri R., Deutschman C.P., Han L., Pope M.A., and Tam K.C., Cellulose Nanocrystals in Smart and Stimuli-Responsive Materials: A Review, Today Adv., 5, 100055, 2020.
  29. Hasan I. and Walia S., A Review on Properties and Challenges Associated with Cellulose Nanocrystals and Nanocomposites, Today Proc., 45, 3365-3369, 2021.
  30. Cidreira A.C.M., De Castro K.C., Hatami T., Linan L.Z., and Mei L.H.I., Cellulose Nanocrystals-Based Materials as Hemostatic Agents for Wound Dressings: A Review, Microdevices, 23, 43, 2021.
  31. Wijaya C.J., Ismadji S., and Gunawan S., A Review of Lignocellulosic-Derived Nanoparticles for Drug Delivery Applications: Lignin Nanoparticles, Xylan Nanoparticles, and Cellulose Nanocrystals, Molecules, 26, 676, 2021.
  32. Shamshina J.L. and Abidi N., Cellulose Nanocrystals from Ionic Liquids: A Critical Review, Green Chem., 23, 6205-6222, 2021.
  33. Long W., Ouyang H., Hu X., Liu M., Zhang X., Feng Y., and Wei Y., State-of-Art Review on Preparation, Surface Functionalization and Biomedical Applications of Cellulose Nanocrystals-Based Materials, J. Biolog. Macromol., 186, 591-615, 2021.
  34. Ng L.Y., Wong T.J., Ng C.Y., and Amelia C.K.M., A Review on Cellulose Nanocrystals Production and Characterization Methods from Elaeis Guineensis Empty Fruit Bunches, Arabian J. Chem., 14, 103339, 2021.
  35. Nagarajan K., Ramanujam N.R., Sanjay M.R., Siengchin S., Surya Rajan B., Sathick Basha K., Madhu P., and Raghav G.R., A Comprehensive Review on Cellulose Nanocrystals and Cellulose Nanofibers: Pretreatment, Preparation, and Characterization, Compos., 42, 1588-1630, 2021.
  36. Lee Y., Zhang H., Yu H.-Y., and Tam K.C., Electroconductive Cellulose Nanocrystals-Synthesis, Properties and Applications: A Review, Polym., 289, 119419, 2022.
  37. Bai L., Ding A., Li G., and Liang H., Application of Cellulose Nanocrystals in Water Treatment Membranes: A Review, Chemosphere, 308, 136426, 2022.
  38. Gong X., Kalantari M., Aslanzadeh S., and Boluk Y., Interfacial Interactions and Electrospinning of Cellulose Nanocrystals Dispersions in Polymer Solutions: A Review, Dispersion Sci. Technol., 43, 945-977, 2022.
  39. Magagula L.P., Masemola C.M., Ballim M.A. Tetana Z.N., Moloto N., and Linganiso E.C., Lignocellulosic Biomass Waste-Derived Cellulose Nanocrystals and Carbon Nanomaterials: A Review, J. Molecul. Sci., 23, 4310, 2022.
  40. Raza M. and Abu-Jdayil B., Cellulose Nanocrystals from Lignocellulosic Feedstock: A Review of Production Technology and Surface Chemistry Modification, Cellulose, 29, 685-722, 2022.
  41. Chaka K.T., Extraction of Cellulose Nanocrystals from Agricultural by-Products: A Review, Green Chem. Lett. Rev., 15, 582-597, 2022.
  42. Abbasi Moud A. and Abbasi Moud A., Flow and Assembly of Cellulose Nanocrystals (CNC): A Bottom-up Perspective - A Review, J. Biolog. Macromol., 232, 123391, 2023.
  43. Roopchund R., Andrew J., and Sithole B., Using a Systematic Review to Develop a Cellulose Nanocrystals Production Framework for Use as a Design Baseline and Optimization Tool, South African J. Chem. Eng., 44, 344-355, 2023.
  44. Elaine C.R. and Alain D., A Review of Cellulose Nanocrystals and Nanocomposites, TAPPI J., 10, 9-16, 2011.
  45. Ferreira F.V., Dufresne A., Pinheiro I.F., Souza D.H.S., Gouveia R.F., Mei L.H.I., and Lona L.M.F., How do Cellulose Nanocrystals Affect the Overall Properties of Biodegradable Polymer Nanocomposites: A Comprehensive Review, Polym. J., 108, 274-285, 2018.
  46. Kim H.J. Jeong J.H., Choi Y.H., and Eom Y., Review on Cellulose Nanocrystal-Reinforced Polymer Nanocomposites: Processing, Properties, and Rheology, Korea-Australia Rheol. J., 33, 165-185, 2021.
  47. Gomri C., Cretin M., and Semsarilar M., Recent Progress on Chemical Modification of Cellulose Nanocrystal (CNC) and Its Application in Nanocomposite Films and Membranes-A Comprehensive Review, Polym., 294, 119790, 2022.
  48. Thompson L., Azadmanjiri J., Nikzad M., Sbarski I., Wang J., and Yu A., Cellulose Nanocrystals: Production, Functionalization and Advanced Applications, Adv. Mater. Sci., 58, 1-16, 2019.
  49. Tang Y., Yang H., and Vignolini S., Recent Progress in Production Methods for Cellulose Nanocrystals: Leading to More Sustainable Processes, Sustain. Systems, 6, 2100100, 2022.
  50. Chakrabarty A. and Teramoto Y., Recent Advances in Nanocellulose Composites with Polymers: Aguide for Choosing Partners and How to Incorporate Them, Polymers, 10, 517, 2018.
  51. Hu Y. and Abidi N., Distinct Chiral Nematic Self-Assembling Behavior Caused by Different Size-Unified Cellulose Nanocrystals via a Multistage Separation, Langmuir, 32, 9863-9872, 2016.
  52. Peng B.L., Dhar N., Liu H., and Tam K., Chemistry and Applications of Nanocrystalline Cellulose and Its Derivatives: A Nanotechnology Perspective, Canadian J. Chem. Eng., 89, 1191-1206, 2011.
  53. Gan I. and Chow W.S., Synthesis of Phosphoric Acid-treated Sugarcane Bagasse Cellulose Nanocrystal and Its Thermal Properties Enhancement for Poly(lactic acid) Nanocomposites, Thermoplast. Compos. Mater., 32, 619-634, 2019.
  54. Yu H., Qin Z., Liang B., Liu N., Zhou Z., and Chen L., Facile Extraction of Thermally Stable Cellulose Nanocrystals with a High Yield of 93% through Hydrochloric Acid Hydrolysis under Hydrothermal Conditions, Mater. Chem., 1, 3938-3944, 2013.
  55. Sadeghifar H., Filpponen I., Clarke S.P., Brougham D.F., and Argyropoulos D.S.J.J., Production of Cellulose Nanocrystals Using Hydrobromic Acid and Click Reactions on Their Surface, Mater. Sci., 46, 7344-7355, 2011.
  56. Koshani R., van de Ven T.G., and Madadlou A., Characterization of Carboxylated Cellulose Nanocrytals Isolated through Catalyst-Assisted H2O2 Oxidation in a One-Step Procedure, Agricult. Food Chem., 66, 7692-7700, 2018.
  57. Cheng M., Qin Z., Hu J., Liu Q., Wei T., Li W., Ling Y., and Liu B., Facile and Rapid One–Step Extraction of Carboxylated Cellulose Nanocrystals by H2SO4/HNO3 Mixed Acid Hydrolysis, Polym., 231, 115701, 2020.
  58. Xie H., Zou Z., Du H., Zhang X., Wang X., Yang X., Wang H., Li G., Li L., and Si C., Preparation of Thermally Stable and Surface-Functionalized Cellulose Nanocrystals via Mixed H2SO4/Oxalic Acid Hydrolysis, Polym., 223, 115116, 2019.
  59. Cheng M., Qin Z., Chen Y., Liu J., and Ren Z., Facile One-Step Extraction and Oxidative Carboxylation of Cellulose Nanocrystals through Hydrothermal Reaction by Using Mixed Inorganic Acids, Cellulose, 24, 3243-3254, 2017.
  60. Beck-Candanedo S., Roman M., and Gray D.G., Effect of Reaction Conditions on the Properties and Behavior of Wood Cellulose Nanocrystal Suspensions, Biomacromolecules, 6, 1048-1054, 2005.
  61. Luo Y., Song T., Ji H., Qi H., Xiang Z., Xiong H., Cen Y., Chen G., Han T., and Pranovich A., Preliminary Investigations of the Mechanisms Involved in the Ultrasonication-Assisted Production of Carboxylic Cellulose Nanocrystals with Different Structural Carboxylic Acids, ACS Sustain. Chem. Eng., 9, 4531-4542, 2021.
  62. Fleming K., Gray D., Prasannan S., and Matthews S., Cellulose Crystallites: A New and Robust Liquid Crystalline Medium for the Measurement of Residual Dipolar Couplings, Am. Chem. Soci., 122, 5224-5225, 2000.
  63. Sèbe G., Ham-Pichavant F., Ibarboure E., Koffi A.L.C., and Tingaut P., Supramolecular Structure Characterization of Cellulose II Nanowhiskers Produced by Acid Hydrolysis of Cellulose I Substrates, Biomacromolecules, 13, 570-578, 2012.
  64. Angellier H., Putaux J.L., Molina-Boisseau S., Dupeyre D., and Dufresne A., Starch Nanocrystal Fillers in an Acrylic polymer Matrix, Sympos., 221, 95-104, 2005.
  65. Wang W., Sun N., Cai Z., Sun K., Gu F., Jin Y., and Xiao H., Sustainable High Yield Production of Cellulose Nanomaterials for Easy-Cleaning Surfaces of Cellulose-Based Materials, BioResources, 15, 1014-1025, 2020.
  66. Mazandarani M., Ghasemian A., Saraeyan A., Mashkour M., and Jafari Petroudy S., Optimum Production of Cellulose NanoCrystal from Cotton Stalk under Acidic Hydrolysis Condition, J. Wood Paper Sci. Res., 30, 1-13, 2015.
  67. Oksman K., Aitomäki Y., Mathew A., Siqueira G., Zhou Q., Butylina S., Tanpichai S., Zhou X., and Hooshmand S., Review of the Recent Developments in Cellulose Nanocomposite Processing, Part A: Appl. Sci. Manufact., 83, 2-18, 2016.
  68. Peng Y., Gardner D.J., and Han Y., Drying Cellulose Nanofibrils: In Search of a Suitable Method, Cellulose, 19, 91-102, 2012.
  69. Hafemann E., Battisti R., Bresolin D., Marangoni C., and Machado R.A.F., Enhancing Chlorine-Free Purification Routes of Rice Husk Biomass Waste to Obtain Cellulose Nanocrystals, Waste and Biomass Valorization, 11, 6595-6611, 2020.
  70. Nang An V., Chi Nhan H.T., Tap T.D., Van T.T.T., Van Viet P., and Van Hieu L., Extraction of High Crystalline Nanocellulose from Biorenewable Sources of Vietnamese Agricultural Wastes, Polym. Environ., 28, 1465-1474, 2020.
  71. Wang H., Xie H., Du H., Wang X., Liu W., Duan Y., Zhang X., Sun L., Zhang X., and Si C., Highly Efficient Preparation of Functional and Thermostable Cellulose Nanocrystals via H2SO4 Intensified Acetic Acid Hydrolysis, Polym., 239,116233, 2020.
  72. Hassan M.L., Moorefield C.M., Elbatal H.S., Newkome G.R., Modarelli D.A., and Romano N.C., Fluorescent Cellulose Nanocrystals via Supramolecular Assembly of Terpyridine-Modified Cellulose Nanocrystals and Terpyridine-Modified Perylene, Sci. Eng. B, 177, 350-358, 2012.
  73. Lu P. and Hsieh Y.-L., Preparation and Properties of Cellulose Nanocrystals: Rods, Spheres, and Network, Polym., 82, 329-336, 2010.
  74. Fashandi H., Abolhasani M.M., Sandoghdar P., Zohdi N., Li Q., and Naebe M., Morphological Changes towards Enhancing Piezoelectric Properties of PVDF Electrical Generators Using Cellulose Nanocrystals, Cellulose, 23, 3625-3637, 2016.
  75. Peng S.X., Moon R.J., and Youngblood J.P., Design and Characterization of Cellulose Nanocrystal-Enhanced Epoxy Hardeners, Green Mater., 2, 193-205, 2014.
  76. Capadona J., Van Den Berg O., Capadona L., Schroeter M., Rowan S., Tyler D., and Weder C., A Versatile Approach for the Processing of Polymer Nanocomposites with Self-Assembled Nanofibre Templates, Nature Nanotechnol., 2, 765-769,, 2007.
  77. Yang F., Wu Y., Zhang S., Zhang H., Zhao S., Zhang J., and Fei B., Mechanical and Thermal Properties of Waterborne Polyurethane Coating Modified through One-Step Cellulose Nanocrystals/Graphene Materials Sols Method, Coating, 10, 40, 2020.
  78. Roohani M., Kord B., Motie N., and Behzadi F., Barrier Properties of Cellulose Nanocrystals-PVA Nanocomposites, For. Wood Prod., 67, 517-528, 2014.
  79. Madhoushi M., Mehdinia M., and Yousefi H., Study of Physical and Mechanical Properties of Cellulosic and Lignocellulosic Nanofibers Reinforced Epoxy Resin, Wood. For. Sci. Technol., 23, 179-296, 2017.
  80. Ding C. and Matharu A.S., Recent Developments on Biobased Curing Agents: A Review of Their Preparation and Use, ACS Sustain. Chem. Eng., 2, 2217-2236, 2014.
  81. Sprenger S., Epoxy Resin Composites with Surface-Modified Silicon Dioxide Nanoparticles: A Review, Appl. Polym. Sci., 130, 1421-1428, 2013.
  82. Jin F.-L., Li X., Park S., and Chemistry E., Synthesis and Application of Epoxy Resins: A Review, Ind. Eng. Chem., 29, 1-11, 2015.
  83. Neves R.M., Ornaghi Jr H.L., Zattera A.J., and Amico S.C.J.C.P., Recent Studies on Modified Cellulose/Nanocellulose Epoxy Composites: A Systematic Review, Polym., 255, 117366, 2021.
  84. Laghaei R., Hejazi S.M., Fashandi H., Akbarzadeh S., Shaghaghi S., and Shamaei-Kashani A., Improvement in Fracture Toughness and Impact Resistance of E-Glass/Epoxy Composites Using Layers Composed of Hollow Poly(ethylene terephthalate) Fibers, Ind. Text., 51, 4860S-4879S, 2022.
  85. Yavari F., Rafiee M., Rafiee J., Yu Z.-Z., and Koratkar N.J.A.., Dramatic Increase in Fatigue Life in Hierarchical Graphene Composites, ACS Appl. Mater., 2, 2738-2743, 2010.
  86. Pontefisso A., and Mishnaevsky Jr L.J.C.P.B.E., Nanomorphology of Graphene and CNT Reinforced Polymer and Its Effect on Damage: Micromechanical Numerical Study, Compos. B. Eng. 96, 338-349, 2016.
  87. Kinloch A., Mohammed R., Taylor A., Eger C., Sprenger S., and Egan D., The Effect of Silica Nano Particles and Rubber Particles on the Toughness of Multiphase Thermosetting Epoxy Polymers, Mater. Sci., 40, 5083-5086, 2005.
  88. Zhou H., Mishnaevsky Jr.L., Yi H., Liu Y., Hu X., and Warrier A., Carbon Fiber/Carbon Nanotube Reinforced Hierarchical Composites: Effect of CNT Distribution on Shearing Strength, Part B: Eng., 88, 201-211, 2016.
  89. Ma P.-C. and Zhang Y.J.R., Perspectives of Carbon Nanotubes/Polymer Nanocomposites for Wind Blade Materials, Sustain. Energy Rev., 30, 651-660, 2014.
  90. Yue L., Maiorana, Khelifa F., Patel A., Raquez J-M,, Bonnaud L., Gross R., Dubois P., and Manas-Zloczower L., Surface-Modified Cellulose Nanocrystals for Biobased Epoxy Nanocomposites, Polymer, 134, 155-162, 2018.
  91. Kang J.S., Myles A.J., and Harris K.D., Thermally-Degradable Thermoset Adhesive Based on a Cellulose Nanocrystals/Epoxy Nanocomposite, ACS Appl. Polym. Mater., 2, 4626-4631, 2020.
  92. Yue L., Ke K., Amirkhosravi M., Gray T.G., and Manas-Zloczower I., Catalyst-Free Mechanochemical Recycling of Biobased Epoxy with Cellulose Nanocrystals, ACS Appl. Bio Mater., 4, 4176-4183, 2021.
  93. Laghaei R., Fashandi H., Hejazi S.M., Shaghaghi S., and Shamaei-Kashani A., Enhancing Mechanical Properties of Biaxial E-glass Fabric/Epoxy Composite Using Cellulose Nanocrystals: Impact of Mixing Medium, Compos. Mater., 55, 1-19, 2021.
  94. Laghaei R., Hejazi S.M., Fashandi H., Akbarzadeh S., Shaghaghi S., Shamaei-Kashani A., Jahanara A., and Shahsavari E., Reinforcement Contribution of Cellulose Nanocrystals (CNCs) to Tensile Properties and Fracture Behavior of Triaxial E-glass Fabric/Epoxy Composites, Part A: Appl. Sci. Manufact., 164, 107258, 2023.
  95. Pruksawan S., Samitsu S., Fujii Y., Torikai N., and Naito M., Toughening Effect of Rodlike Cellulose Nanocrystals in Epoxy Adhesive, ACS Appl. Polym. Mater., 2, 1234-1243, 2020.
  96. Yue L., Amirkhosravi M., Ke K., Gray T.G., and Manas-Zloczower I., Cellulose Nanocrystals: Accelerator and Reinforcing Filler for Epoxy Vitrimerization, ACS Appl. Mater. Interfaces, 13, 3419-3425, 2021.
  97. Vijay R., James Dhilip J., Gowtham S., Harikrishnan S.B.M.A., Chandru B., Amarnath M., and Khan A., Characterization of Natural Cellulose Fiber from the Barks of Vachellia Farnesiana, Nat. Fibers, 19, 1-10, 2020.
  98. Parker R., Guidetti G., Williams C., Zhao T., Narkevicius A., Vignolini S., and Frka-Petesic B., The Self-Assembly of Cellulose Nanocrystals: Hierarchical Design of Visual Appearance, Mater., 30, 1704477, 2018.
  99. Narkevicius A., Steiner M.L., Parker R., Ogawa Y., Frka-Petesic B., and Vignolini S., Controlling the Self-Assembly Behavior of Aqueous Chitin Nanocrystal Suspensions, Biomacromolecules, 20, 2830-2838, 2019.
  100. Bangar S. P., Harussani M., Ilyas RA., Ashogbon A., Singh A., Trif M., and Jafari S., Surface Modifications of Cellulose Nanocrystals: Processes, Properties, and Applications, Food Hydrocoll., 130, 107689, 2022.
  101. Xu S., Girouard N., Schueneman G., Shofner M. L., and Meredith J.C., Mechanical and Thermal Properties of Waterborne Epoxy Composites Containing Cellulose Nanocrystals, Polymer, 54, 6589-6598, 2013.
  102. Emami Z., Meng Q., Pircheraghi G., and Manas-Zloczower I., Use of Surfactants in Cellulose Nanowhisker/Epoxy Nanocomposites: Effect on Filler Dispersion and System Properties, Cellulose, 22, 3161-3176, 2015.
  103. Matos Ruiz M., Cavaillé J.Y., Dufresne A., Gérard J.F., and Graillat C., Processing and Characterization of New Thermoset Nanocomposites Based on Cellulose Whiskers, Interfaces, 7, 117-131, 2000.
  104. Tang L. and Weder C., Cellulose Whisker/Epoxy Resin Nanocomposites, ACS Appl. Mater. Interfaces, 2, 1073-1080, 2010.
  105. Abraham E., Kam, Nevo Y., Slattegard R., Rivkin A., Lapidot S., and Shoseyov O., Highly Modified Cellulose Nanocrystals and Formation of Epoxy-Nanocrystalline Cellulose (CNC) Nanocomposites, ACS Appl. Mater. Interfaces, 8, 28086-28095, 2016.
  106. Hajlane A., Kaddami H., Joffe R., and Wallström L., Design and Characterization of Cellulose Fibers with Hierarchical Structure for Polymer Reinforcement, Cellulose, 20, 2765-2778, 2013.
  107. Hajlane A., Kaddami H., and Joffe R., Chemical Modification of Regenerated Cellulose Fibres by Cellulose Nano-crystals: Towards Hierarchical Structure for Structural Composites Reinforcement, Crops Prod., 100, 41-50, 2017.
  108. Siqueira G., Bras J., and Dufresne A., New Process of Chemical Grafting of Cellulose Nanoparticles with a Long Chain Isocyanate, Langmuir, 26, 402-411, 2009.
  109. Deng X., Kinloch A., Pimenta S., Schueneman G., Sprenger S., Taylor A., and Teo W., Homogeneous and Toughened Cellulose Epoxy Composites, Presented at the 21st International Conference on Composite Materials, August 2017.
  110. Lu T., Jiang M., Jiang Z., Hui D., Wang Z., and Zhou Z., Effect of Surface Modification of Bamboo Cellulose Fibers on Mechanical Properties of Cellulose/Epoxy Composites, Part B: Eng., 51, 28-34, 2013.
  111. Azizi Samir M.A.S., Alloin F., and Dufresne A., Review of Recent Research into Cellulosic Whiskers, Their Properties and Their Application in Nanocomposite Field, Biomacromolecules, 6, 612-626, 2005.
  112. Ohnishi Y., Fujii T., and Okubo K., Improvement in the Mechanical Properties of Light Curing Epoxy Resin with Micro-Fibrillated Cellulose, WIT Trans. State Art Sci., Eng., 87, 95-104, 2015.
  113. Batista M.D.R., and Drzal L.T.J.C.S., Carbon Fiber/Epoxy Matrix Composite Interphases Modified with Cellulose Nanocrystals, Sci. Technol., 164, 274-281, 2018.
  114. Trinh B.M. and Mekonnen T.J.P., Hydrophobic Esterification of Cellulose Nanocrystals for Epoxy Reinforcement, Polymer, 155, 64-74, 2018.
  115. Cai S., Li Y., Liu H.-Y., and Mai Y.-W.J.C.S., Effect of Electrospun Polysulfone/Cellulose Nanocrystals Interleaves on the Interlaminar Fracture Toughness of Carbon Fiber/Epoxy Composites, Sci. Technol., 181, 107673, 2019.
  116. Bartoli M., Rosso C., Giorcelli M., Rovere M., Jagdale P., Tagliaferro A., Chae M., and Bressler D., Effect of Incorporation of Microstructured Carbonized Cellulose on Surface and Mechanical Properties of Epoxy Composites, Appl. Polym. Sci., 137, 48896, 2020.
  117. Ly M. and Mekonnen T.H., Cationic Surfactant Modified Cellulose Nanocrystals for Corrosion Protective Nanocomposite Surface Coatings, Ind. Eng. Chem., 83, 409-420, 2020.
  118. Qin X., Ge W., Mei H., Li L., and Zheng S.J.P.I., Toughness Improvement of Epoxy Thermosets with Cellulose Nanocrystals, Int., 70, 1640-1648, 2021.
  119. Aziz T., Zheng J., Jamil M., Fan H., Ullah R., Iqbal M., Ali A., Khan F., and Ullah A., Enhancement in Adhesive and Thermal Properties of Bio-based Epoxy Resin by Using Eugenol Grafted Cellulose Nanocrystals, Inorg. Organomet. Polym. Mater., 31, 3290-3300, 2021.
  120. Huang X., Yang L., Meng L., and Lu J., Mechanical and Thermal Properties of Cellulose Nanocrystals from Jute Fibers Reinforced Epoxy Composites, Text. Inst., 113, 1-5, 2021.
  121. Qiu K., Tannenbaum R., and Jacob K.I., Effect of Processing Techniques and Residual Solvent on the Thermal/Mechanical Properties of Epoxy-Cellulose Nanocrystal Nanocomposites, Eng. Sci., 61, 1281-1294, 2021.
  122. Mamat Razali N.A., Ismail M.F., and Abdul Aziz F., Characterization of Nanocellulose from Indica Rice Straw as Reinforcing Agent in Epoxy-Based Nanocomposites, Eng. Sci., 61, 1594-1606, 2021.
  123. Nadendla S. and Kopparthi P.K., Chemo-Mechanical Synthesis, Characterization of Nanocellulose from Okra Fibre and Their Epoxy Composites, Mater. Process. Technol., 8, 1-19, 2021.
  124. Nascimento N.R.d., Pinheiro I.F., Alves G.F., Mei L.H.I., Macedo Neto J.C.d., and Morales A.R.J.P., Role of Cellulose Nanocrystals in Epoxy-Based Nanocomposites: Mechanical Properties, Morphology and Thermal Behavior, Polímeros, 31, 1-13, 2022.
  125. Thompson L., Nikzad M., Sbarski I., and Yu A., Esterified Cellulose Nanocrystals for Reinforced Epoxy Nanocomposites, Nat. Sci.: Mater. Int., 32, 328-333, 2022.
  126. Haney R., Kollarigowda R.H., Wiegart L., and Ramakrishnan S., Surface-Functionalized Cellulose Nanocrystals as Nanofillers for Crosslinking Processes: Implications for Thermosetting Resins, ACS Appl. Nano Mater., 5, 1891-1901, 2022.