الکترولیت‌های پلیمری در باتری‌های لیتیمی: مروری بر انواع، مشخصه‌ها و چالش‌ها

نوع مقاله : مروری

نویسنده

گرگان، دانشگاه گلستان، دانشکده فنی ومهندسی، گروه مهندسی پلیمر، صندوق پستی 88389-49188

چکیده

امروزه رشد اقتصادی کشورها به تأمین منابع انرژی وابسته است. در بیشتر کشورها این منابع شامل زغال‌سنگ، نفت، گاز طبیعی و نیز انرژی هسته‌ای است. با وجود این، استفاده از این منابع با چالش‌های مختلفی از قبیل پایان‌پذیری، آلودگی و هزینه زیاد رو‌به‌روست. به‌منظور کاهش اتکای جهانی به منابع طبیعی پایان‌پذیر و سوخت‌های مخرب محیط‌زیست، تلاش‌های فراوانی در جایگزینی آن‌ها با منابع تجدیدپذیر از قبیل انرژی خورشیدی، آب و باد انجام شده است. لازمه استفاده از سامانه‌های تجدیدپذیر در تأمین انرژی، ذخیره‌سازی و امکان استفاده تمام اوقات از آن‌هاست. بدین منظور، باتری‌ها به‌عنوان یکی از فناوری‌های کاربردی جزو دستگاه‌های ذخیره انرژی مهم در زندگی روزانه ما هستند که نقش مهمی در ابزارهای الکتریکی و الکترونیکی دارند. با وجود این، کاربردهای عملی آن‌ها با مسائل ایمنی ناشی از الکترولیت مایع مواجه است، به‌ویژه زمانی که باتری‌ها در معرض شرایط سخت مکانیکی، گرمایی یا الکتریکی قرار می‌گیرند. الکترولیت‌های پلیمری به‌عنوان جایگزین الکترولیت مایع برای ساخت باتری‌های لیتیم ایمن پیشنهاد می‌شوند. در این مقاله، الکترولیت‌های پلیمری به دوگروه بزرگ الکترولیت پلیمری جامد و ژلی دسته‌بندی می‌شوند. ابتدا، خواص و مشخصه‌های الکترولیت‌های پلیمری جامد و ژلی بحث می‌شود. سپس، پیشرفت‌های اخیر پلیمرهای رایج از قبیل پلی(اتیلن اکسید)، پلی(متیل متاکریلات)، پلی‌آکریلونیتریل، پلی(وینیلیدن دی‌فلوئورید) و کوپلیمر پلی(وینیلیدن فلوئورید-هگزا فلوئوروپروپیلن)، زیست‌پلیمرها (سلولوز، پلی‌یورتان و پلی‌کاپرولاکتون)، پلی‌کربنات و پلی‌سیلوکسان‌ها به‌عنوان پلیمر میزبان الکترولیت‌های پلیمری در باتری لیتیم بحث می‌شوند. در نهایت، چالش‌ها و چشم‌اندازهای آتی الکترولیت‌های پلیمری برای باتری‌های لیتیمی بیان می‌شود. امید می‌رود، این مقاله بتواند اطلاعات مفیدی را برای توسعه الکترولیت‌های پلیمری جدید با خواص عالی به‌منظور کاربرد در باتری لیتیمی فراهم کند. 

کلیدواژه‌ها


عنوان مقاله [English]

Polymer Electrolytes for Lithium Batteries : A Review on Types, Characteristics and Challenges

نویسنده [English]

  • Elham Aram
Department of Polymer Engineering, Faculty of Engineering, Golestan University, P.O. Box 49188‑88369, Gorgan, Iran
چکیده [English]

Today, the economic growth of countries depends on the supply of energy resources. In most countries, these resources include coal, oil, natural gas, and nuclear energy. However, the use of these resources faces various challenges, including the depletion of fossil fuel resources, environmental pollution and an escalating price. In order to reduce global reliance on finite natural resources and environmentally destructive fuels, many efforts have been made to replace them with renewable resources, such as solar energy, water, wind, and etc. Batteries are one of the most potential technologies for this purpose. Lithium batteries have become increasingly important energy storage systems in our daily lives, which play a significant role in electronics and electric vehicles. However, their practical applications are plagued by the safety issues from liquid electrolytes, especially when the batteries are exposed to mechanical, thermal, or electrical abuse conditions. Polymer electrolytes are being proposed as an alternative liquid electrolyte for building safer lithium batteries. In this review article, polymer electrolytes are divided into two large categories of solid polymer electrolytes and gel polymer electrolytes. The characteristics and properties of solid polymer electrolytes and gel polymer electrolytes are presented at the first. Then, the recent progress of common polymers, namely, poly(ethylene oxide), poly(methyl methacrylate), polyacrylonitrile, poly(vinylidene difluoride) and poly(vinylidene fluoride-hexafluoropropylene) copolymer, biopolymers (cellulose, polyurethane, polycaprolactone), polycarbonate and polysiloxanes as polymer host of polymer electrolytes will be discussed. Finally, we will discuss remaining challenges and future perspectives of the polymer electrolytes for high-performance lithium batteries. We hope that this paper can provide useful information for the development of new polymer electrolytes with excellent properties for use in lithium batteries. 

کلیدواژه‌ها [English]

  • Polymer
  • Lithium battery
  • Gel polymer electrolyte
  • Solid polymer electrolyte
  • Ionic conductivity
  1. Zhang H., Zhou M.Y., Lin C.E., and Zhu B.K., Progress in Polymeric Separators for Lithium Ion Batteries, RSC Adv., 5, 89848-89860, 2015.
  2. Barrera T.P., Bond J.R., Bradley M., Gitzendanner R., Darcy E.C., Armstrong M., and Wang C.Y., Next-Generation Aviation Li-Ion Battery Technologies Enabling Electrified Aircraft, Electrochem. Soc. Interface., 31, 69-73, 2022.
  3. Peled E., Golodnitsky D., Ardel G., and Eshkenazy V., The Role of SEI in Lithium and Lithium Ion Batteries, MRS Online Proceedings Library, 393, 209-291, 1995.
  4. Ergus J.W., Ceramic and Polymeric Solid Electrolytes for Lithium-Ion Batteries,  J. Power Sources, 195, 4554-4569, 2010.
  5. Chawla N., Bharti N., and Singh S., Recent Advances in Non-Flammable Electrolytes for Safer Lithium-Ion Batteries, Batteries, 5, 19-44, 2019.
  6. Agbolaghi S., Mohammadi-Vanyar O., and Abbaspoor S., Stabilization of Polymer Solar Cells and Their Importance in Photovoltaic Systems: A Review, Iran. J. Polym. Sci. Technol. (Persian), 34, 99-129, 2021.
  7. Linden D., Handbook of Batteries, Mcgraw-Hill, New York, 1995.
  8. Tarascon J.M. and Armand M., Issues and Challenges Facing Rechargeable Lithium Batteries, Nature, 414, 359-367, 2001.
  9. Zhang J., Zhang L., Sun F., and Wang Z., An Overview on Thermal Safety Issues of Lithium-Ion Batteries for Electric Vehicle Application, IEEE Access, 6, 23848-23863, 2018.
  10. Zaboli A., Raissi H., Hashemzadeh H., and Farzad F., Toward Efficient Electrodes for a High-Performance Fast-Charge Li-Ion Battery: A DFT Calculations and Molecular Dynamics Simulation Study, Phys. Chem. Chem. Phys., 25, 23937-23953, 2023.
  11. Arya A. and Sharma A.L., A Glimpse on All-Solid-State Li-Ion Battery (ASSLIB) Performance Based on Novel Solid Polymer Electrolytes: A Topical Review, J. Mater. Sci., 55, 6242-6304, 2020.
  12. Günter F.J., Burgstaller C., Konwitschny F., and Reinhart G., Influence of the Electrolyte Quantity on Lithium-Ion Cells, J. Electrochem. Soc., 166, A1709-A1714, 2019.
  13. Mukherjee R., Krishnan R., Lu T.M., and Koratkar N., Nanostructured Electrodes for High-Power Lithium Ion Batteries, Nano Energy, 1, 518-533, 2012.
  14. Wang Y. and Cao G., Developments in Nanostructured Cathode Materials for High-Performance Lithium-Ion Batteries, Adv. Mater., 20, 2251-2269, 2008.
  15. Yang L.C., Guo W.L., Shi Y., and Wu Y.P., Graphite@MoO3 Composite as Anode Material for Lithium Ion Battery in Propylene Carbonate-Based Electrolyte, J. Alloys Compd., 501, 218-220, 2010.
  16. Chan C.K., Patel R.N., O’Connell M.J., Korgel B.A., and Cui Y., Solution-Grown Silicon Nanowires for Lithium-Ion Battery Anodes, ACS Nano, 4, 1443-1450, 2010.
  17. Nobili F., Mancini M., Dsoke S., Tossici R., and Marassi R., Low-Temperature Behavior of Graphite–Tin Composite Anodes for Li-Ion Batteries, J. Power Sources,  195, 7090-7097, 2010.
  18. Gao J., Fu L.J., Zhang H.P., Zhang T., Wu Y.P., and Wu H.Q., Suppression of PC Decomposition at the Surface of Graphitic Carbon by Cu Coating, Electrochem. commun., 8, 1726-1730, 2016.
  19. Chang H., Wu Y.R., Han X., and Yi T.F., Recent Developments in Advanced Anode Materials for Lithium-Ion Batteries, Energy Mater., 1, 24-47, 2021.
  20. Wang Z., Wu C., Liu L., Wu F., Chen L., and Huang X., Electrochemical Evaluation and Structural Characterization of Commercial LiCoO2Surfaces Modified with MgO for Lithium-Ion Batteries, J. Electrochem. Soc., 149, 466-471, 2002.
  21. Cho J., Kim C.S., and Yoo S.I., Improvement of Structural Stability of LiCoO2Cathode during Electrochemical Cycling by Sol–Gel Coating of SnO2, Electrochem. Solid-State Lett., 3, 362-365, 2000.
  22. Zhang Y., Lai J., Gong Y., Hu Y., Liu J., Sun C., and Wang Z.L., A Safe High-Performance All-Solid-State Lithium–Vanadium Battery with a Freestanding V2O5 Nanowire Composite Paper Cathode, ACS Appl. Mater. Interfaces, 8, 34309-34316, 2016.
  23. Lecarme L., Consonni V., Lafolet F., Cossuet T., Mermoux M., Sauvage F., Nourdine A., Alloin F., and Leprêtre J.C., ZnO Nanowires as a Promotor of High Photoinduced Efficiency and Voltage Gain for Cathode Battery Recharging, ACS Appl. Energy Mater., 2, 6254-6262, 2019.
  24. Kirubakaran K.P., Senthil C., Raghu S.C., Priyadarshini M., Kamalakannan S., Prakash M., Lee C.W., and Vediappan K., Vanadium Silicon-Oxyfluoride Nanowires for Lithium Storage Systems: A Perfect Synergy for Dynamic Simple Spot Synthesis, Mater. Sci. Eng. B, 269, 115164, 2021.
  25. Zhang F., Wang C., Huang G., Yin D., and Wang L., FeS2@C Nanowires Derived from Organic-Inorganic Hybrid Nanowires for High-Rate and Long-Life Lithium-Ion Batteries, J. Power Sources, 328, 56-64, 2016.
  26. De Jesus L.R., Horrocks G.A., Liang Y., Parija A., Jaye C., Wangoh L., Wang J., Fischer D.A., Piper L.F., Prendergast D., and Banerjee S., Mapping Polaronic States and Lithiation Gradients in Individual V2O5 Nanowires, Nat. Commun., 7, 12022, 2016.
  27. Christensen C.K., Bøjesen E.D., Sørensen D.R., Kristensen J.H., Mathiesen J.K., Iversen B.B., and Ravnsbæk D.B., Structural Evolution During Lithium- and Magnesium-Ion Intercalation in Vanadium Oxide Nanotube Electrodes for Battery Applications, ACS Appl. Nano Mater., 1, 5071-5082, 2018.
  28. Shobana M.K., Metal Oxide Coated Cathode Materials for Li Ion Batteries–A Review, J. Alloys Compd., 802, 477-487, 2019.
  29. Fergus J.W., Recent Developments in Cathode Materials for Lithium Ion Batteries, J. Power Sources, 195, 939-954, 2010.
  30. Choi J., Son B., Ryou M.H., Kim S.H., Ko J.M., and Lee Y.M., Effect of LiCoO2 Cathode Density and thickness on Electrochemical Performance of Lithium-Ion Batteries, J. Electrochem. Sci. Technol., 4, 27-33, 2013.
  31. Lu J., Li Y., and Huang W., Study on Structure and Electrical Properties of PVDF/Li3/8Sr7/16Zr1/4Ta3/4O3 Composite Solid Polymer Electrolytes for Quasi-Solid-State Li Battery, Mater. Res. Bull., 153, 111880, 2022.
  32. Han L., Liao C., Mu X., Wu N., Xu Z., Wang J., Song L., Kan Y., and Hu Y., Flame-Retardant ADP/PEO Solid Polymer Electrolyte for Dendrite-Free and Long-Life Lithium Battery by Generating Al, P-Rich SEI Layer, Nano Lett., 21, 4447-4453, 2021.
  33. Wang Z., Ma J., Cui P., and Yao X., High-Rate Solid Polymer Electrolyte Based Flexible All-Solid-State Lithium Metal Batteries, ACS Appl. Mater. Interfaces, 14, 34649-34655, 2022.
  34. Singh S.K., Dutta D.P., Gupta H., Srivastava N., Mishra R., Meghnani D., Tiwari R.K., Patel A., Tiwari A., and Singh R.K., Electrochemical Investigation of Double Layer Surface-Functionalized Li-NMC Cathode with Nano-Composite Gel Polymer Electrolyte for Li-Battery Applications, Electrochim. Acta, 435, 141328, 2022.
  35. Pan X., Yang P., Guo Y., Zhao K., Xi B., Lin F., and Xiong S., Electrochemical and Nanomechanical Properties of TiO2 Ceramic Filler Li-Ion Composite Gel Polymer Electrolytes for Li Metal Batteries, Adv. Mater. Interfaces, 8, 2100669, 2021.
  36. Long M.C., Wang T., Duan P.H., Gao Y., Wang X.L., Wu G., and Wang Y.Z., Thermotolerant and Fireproof Gel Polymer Electrolyte Toward High-Performance and Safe Lithium-Ion Battery, J. Energy Chem., 65, 9-18, 2022.
  37. Sazhin S.V., Harrup M.K., and Gering K.L., Characterization of Low-Flammability Electrolytes for Lithium-Ion Batteries, J. Power Sources, 196, 3433-3438, 2011.
  38. Long L., Wang S., Xiao M., and Meng Y., Polymer Electrolytes for Lithium Polymer Batteries, J. Mater. Chem. A, 4, 10038-10069, 2016.
  39. Aram E., Ehsani M., and Khonakdar H.A., Improvement of Ionic Conductivity and Performance of Quasi-Solid-State Dye Sensitized Solar Cell Using PEO/PMMA Gel Electrolyte, Thermochim. Acta, 615, 61-67, 2015.
  40. An Y., Han X., Liu Y., Azhar A., Na J., Nanjundan A.K., Wang S., Yu J., and Yamauchi Y., Progress in Solid Polymer Electrolytes for Lithium-Ion Batteries and Beyond, Small, 18, 2103617, 2022.
  41. Li S., Jiang K., Wang J., Zuo C., Jo Y.H., He D., Xie X., and Xue Z., Molecular Brush with Dense PEG Side Chains: Design of a Well-Defined Polymer Electrolyte for Lithium-Ion Batteries, Macromolecules, 52, 7234-7243, 2019.
  42. Swaby S., Ureña N., Pérez-Prior M.T., del Río C., Várez A., Sanchez J.Y., Iojoiu C., and Levenfeld B., Proton Conducting Sulfonated Polysulfone and Polyphenylsulfone Multiblock Copolymers with Improved Performances for Fuel Cell Applications, J. Ind. Eng. Chem., 122, 366-377, 2023.
  43. Salahshouri Z., Mehdipour-Ataei S., Babanzadeh S., and Mohammadi M., Preparation and Characterization of New Types of Sulfonated Poly(ether sulfide sulfone) for Application in Fuel Cell, Polym. Plast. Technol. Mater., 62, 86-98, 2023.
  44. Mojarrad N.R., Kırlıoğlu A.C., and Kaplan B.Y., P(VDF-TrFE) Reinforced Composite Membranes Fabricated via Sol-Gel and Dual-Fiber Electrospinning for Reduced Relative Humidity Operation of PEM Fuel Cells, Solid State Ion., 392, 116152, 2023.
  45. Deng D., Li-Ion Batteries: Basics, Progress, and Challenges, Energy Sci. Eng., 3, 385-418, 2015.
  46. Heidari A.A., Mahdavi H., and Karami M., Recent Advances in Polyolefin-Based Separators for Li-Ion Battery Applications: A Review, Iran. J. Polym. Sci. Technol. (Persian), 34, 423-442, 2022.
  47. Costa C.M., Lee Y.H., Kim J.H., Lee S.Y., and Lanceros-Méndez S., Recent Advances on Separator Membranes for Lithium-Ion Battery Applications: From Porous Membranes to Solid Electrolytes, Energy Storage Mater., 22, 346-375, 2019.
  48. Arya A. and Sharma A.L., Polymer Electrolytes for Lithium Ion Batteries: A Critical Study, Ionics, 23, 497-540, 2017.
  49. Fang L., Sun W., Hou W., Mao Y., Wang Z., and Sun K., Quasi-Solid-State Polymer Electrolyte Based on Highly Concentrated LiTFSI Complexing DMF for Ambient-Temperature Rechargeable Lithium Batteries, Ind. Eng. Chem. Res., 61, 7971-7981, 2022.
  50. Wang R., Liu F., Duan J., Ren Y., Li M., and Cao J., Enhanced Electrochemical Performance of Al- and Nb-Codoped LLZO Ceramic Powder and Its Composite Solid Electrolyte, ACS Appl. Energy Mater., 4, 13912-13921, 2021.
  51. Jin L., Ahmed F., Ryu T., Yoon S., Zhang W., Lee Y., Kim D., Jang H., and Kim W., Highly Conductive and Flexible Gel Polymer Electrolyte with Bis(fluorosulfonyl)imide Lithium Salt via UV Curing for Li-Ion Batteries, Membranes, 9, 139-150, 2019.
  52. Yang J., Wang X., Zhang G., Ma A., Chen W., Shao L., Shen C., and Xie K., High-Performance Solid Composite Polymer Electrolyte for All Solid-State Lithium Battery Through Facile Microstructure Regulation, Front. Chem., 7, 388-399, 2019.
  53. Zhang N., Wu S., Zheng H., Li G., Liu H., and Duan H., Recent Progress of Multilayer Polymer Electrolytes for Lithium Batteries, Energy Mater., 3, 300009, 2023.
  54. Dehghani E., Salami-Kalajahi M., Moghaddam A.R., and Roghani-Mamaqani H., Preparation of Nanocomposite Polymer Electrolytes by Incorporating Poly[poly(ethylene glycol) methyl ether methacrylate]-grafted Poly(amidoamine) Dendrimer for High Performance Lithium Ion Batteries, Eur. Polym. J., 186, 111854, 2023.
  55. Ghafari M., Sanaee Z., Babaei A., and Mohajerzadeh S., Realization of High-Performance Room Temperature Solid State Li-Metal Batteries Using a LiF/PVDF-HFP Composite Membrane for Protecting an LATP Ceramic Electrolyte, J. Mater. Chem. A, 11, 7605-7616, 2023.
  56. Enayati-Gerdroodbar A., Eliseeva S.N., and Salami-Kalajahi M., A Review on the Effect of Nanoparticles/Matrix Interactions on the Battery Performance of Composite Polymer Electrolytes, J. Energy Storage, 68, 107836, 2023.
  57. Yuan H., Luan J., Yang Z., Zhang J., Wu Y., Lu Z., and Liu H., Single Lithium-Ion Conducting Solid Polymer Electrolyte with Superior Electrochemical Stability and Interfacial Compatibility for Solid-State Lithium Metal Batteries, ACS Appl. Mater. Interfaces, 12, 7249-7256, 2020.
  58. Zhou D., Shanmukaraj D., Tkacheva A., Armand M., and Wang G., Polymer Electrolytes for Lithium-Based Batteries: Advances and Prospects, Chem, 5, 2326-2352, 2019.
  59. Wang X., Zhu H., Girard G.M.A., Yunis R., Macfarlane D.R., Mecerreyes D., Bhattacharyya A.J., Howlett P.C., and Forsyth M., Preparation and Characterization of Gel Polymer Electrolytes Using Poly(ionic liquids) and High Lithium Salt Concentration Ionic Liquids, J. Mater. Chem. A, 5, 23844, 2017.
  60. Zhu Y., Xiao S., Shi Y., Yang Y., Hou Y., and Wu Y., A Composite Gel Polymer Electrolyte with High Performance Based on Poly(vinylidene fluoride) and Polyborate for Lithium Ion Batteries, Adv. Energy Mater., 4, 1300647, 2014.
  61. Zhang J., Sun B., Huang X., Chen S., and Wang G., Honeycomb-Like Porous Gel Polymer Electrolyte Membrane for Lithium Ion Batteries with Enhanced Safety, Sci. Rep., 4, 6007, 2014.
  62. Hamrahjoo M., Hadad S., Dehghani E., Salami-Kalajahi M., and Roghani-Mamaqani, H., Poly(Poly[ethylene glycol] methyl ether methacrylate)/Graphene Oxide Nanocomposite Gel Polymer Electrolytes Prepared by Controlled and Conventional Radical Polymerizations for Lithium Ion Batteries, Int. J. Energy Res., 46, 9114-9127, 2022.
  63. Balkanloo P.G., Marjani A.P., Zanbili F., and Mahmoudian M., Clay Mineral/Polymer Composite: Characteristics, Synthesis, and Application in Li-Ion Batteries: A Review, Appl. Clay Sci., 228, 106632, 2022.
  64. Meng N., Zhu X., and Lian F., Particles in Composite Polymer Electrolyte for Solid-State Lithium Batteries: A Review, Particuology, 60, 14-36, 2022.
  65. Liu S., Liu W., Ba D., Zhao Y., Ye Y., Li Y., and Liu J., Filler-Integrated Composite Polymer Electrolyte for Solid-State Lithium Batteries, Adv. Mater., 35, 2110423, 2023.
  66. Yang X., Liu J., Pei N., Chen Z., Li R., Fu L., Zhang P., and Zhao J., The Critical Role of Fillers in Composite Polymer Electrolytes for Lithium Battery, Nano-Micro Lett., 15, 74-85, 2023.
  67. Kundu S. and Ein-Eli Y., A Review on Design Considerations in Polymer and Polymer Composite Solid-State Electrolytes for Solid Li Batteries, J. Power Sources, 553, 232267, 2023.
  68. Yu Q., Jiang K., Yu C., Chen X., Zhang C., Yao Y., Jiang B., and Long H., Recent Progress of Composite Solid Polymer Electrolytes for All-Solid-State Lithium Metal Batteries, Chin. Chem. Lett., 32, 2659-2678, 2021.
  69. Zhang Q., Liu K., Ding F., and Liu X., Recent Advances in Solid Polymer Electrolytes for Lithium Batteries, Nano Res., 10, 4139-4174, 2017.
  70. Li J., Cai Y., Wu H., Yu Z., Yan X., Zhang Q., Gao T.Z., Liu K., Jia X., and Bao Z., Polymers in Lithium-Ion and Lithium Metal Batteries, Adv. Energy Mater., 11, 2003239, 2021.
  71. Song J.Y., Wang Y.Y., and Wan C.C., Review of Gel-Type Polymer Electrolytes for Lithium-Ion Batteries, J. Power Sources, 77, 183-197, 1999.
  72. Baskoro F., Wong H.Q., and Yen H.J., Strategic Structural Design of a Gel Polymer Electrolyte Toward a High Efficiency Lithium-Ion Battery, ACS Appl. Energy Mater., 2, 3937-3971, 2019.
  73. Marcinek M., Syzdek J., Marczewski M., Piszcz M., Niedzicki L., Kalita M., Plewa-Marczewska A., Bitner A., Wieczorek P., Trzeciak T., Kasprzyk M., Lezak P., Zukowska Z., Zalewska A., and Wieczorek W., Electrolytes for Li-Ion Transport- Review, Solid State Ion., 276, 107-126, 2015.
  74. Mindemark J., Lacey M.J., Bowden T., and Brandell D., Beyond PEO-Alternative Host Materials for Li+-Conducting Solid Polymer Electrolytes, Prog. Polym. Sci., 81, 114-143, 2018.
  75. Dias F.B., Plomp L., and Veldhuis J.B.J., Trends in Polymer Electrolytes for Secondary Lithium Batteries, J. Power Sources, 88, 169-191, 2000.
  76. Song J.Y., Wang Y.Y., and Wan C.C., Review of Gel-Type Polymer Electrolytes for Lithium-Ion Batteries, J. Power Sources, 77,183-197, 1999.
  77. Aram E., Ehsani M., Khonakdar H.A., Jafari S.H., and Nouri N.R., Functionalization of Graphene Nanosheets and Its Dispersion in PMMA/PEO Blend: Thermal, Electrical, Morphological and Rheological Analyses, Fibers Polym., 17, 174-180, 2016.
  78. Aram E., Ehsani M., Khonakdar H.A., Jafari S.H., and Abdollahi, S., Chemically Functionalized Graphene Nanosheets and Their Influence on Thermal Stability, Mechanical, Morphological, and Electrical Properties of Poly(methyl methacrylate)/Poly(ethylene oxide) Blend, Polym. Plast. Technol. Eng., 57, 156-165, 2018.
  79. Aram E., Ehsani M., Khonakdar H.A., and Abdollahi S., Improvement of Electrical, Thermal, and Mechanical Properties of Poly(methyl methacrylate)/Poly(ethylene oxide) Blend Using Graphene Nanosheets, J. Thermoplast. Compos. Mater., 32, 1176-1189, 2019.
  80. Fenton D.E., Parker J.M., and Wright P.V., Complexes of Alkali Metal Ions with Poly(ethylene oxide), Polymer, 14, 589-595, 1973.
  81. Xu K., Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries, Chem. Rev., 104, 4303-4418, 2004.
  82. Balo L., Gupta H., Kumar Singh V., and Kumar Singh R., Flexible Gel Polymer Electrolyte Based on Ionic Liquid EMIMTFSI for Rechargeable Battery Application, Electrochim. Acta, 230, 123-131, 2017.
  83. Li C., Huang Y., Feng X., Zhang Z., and Liu P., High Electrochemical Performance Poly(ethylene oxide)/2, 4-Toluene Diisocyante/Polyethylene Glycol as Electrolytes for All-Solid-State Lithium Batteries, J. Membr. Sci., 587, 117179, 2019.
  84. Ai S., Wang T., Li T., Wan Y., Xu X., Lu H., Qu T., Luo S., Jiang J., Yu X., and Zhou D., A Chitosan/Poly(ethylene oxide)-Based Hybrid Polymer Composite Electrolyte Suitable for Solid-State Lithium Metal Batteries, ChemistrySelect, 5, 2878-2885, 2020.
  85. Li W., Wu Y., Wang J., Huang D., Chen L., and Yang G., Hybrid Gel Polymer Electrolyte Fabricated by Electrospinning Technology for Polymer Lithium-Ion Battery, Eur. Polym. J., 67, 365-372, 2015.
  86. Yuan G., Zhang H., Wang M., Chen X., Guo H., and Chen X., Study of Poly(organic palygorskite-methyl methacrylate)/Poly(ethylene oxide) Blended Gel Polymer Electrolyte for Lithium-Ion Batteries, J. Appl. Polym. Sci., 138, 49799, 2021.
  87. Ahn C.H., Kim J.J., Yang W.S., and Cho H.K., Multiple Functional Biomolecule-Based Metal-Organic-Framework-Reinforced Polyethylene Oxide Composite Electrolytes for High-Performance Solid-State Lithium Batteries, J. Power Sources, 557, 232528, 2023.
  88. Sun J., Li Y., Zhang Q., Hou C., Shi Q., and Wang H., A Highly Ionic Conductive Poly(methyl methacrylate) Composite Electrolyte with Garnet-Typed Li6.75La3Zr1.75Nb0.25O12 Nanowires, Chem. Eng. J., 375, 121922, 2019.
  89. Vondrak J., Sedlarikova M., Velicka J., Klapste B., Novak V., and Reiter J., Gel Polymer Electrolytes Based on PMMA, Electrochim. Acta, 46, 2047-2048, 2001.
  90. Bergman M., Bergfelt A., Sun B., Bowden T., Brandell D., and Johansson P., Graft Copolymer Electrolytes for High Temperature Li-Battery Applications, Using Poly(methyl methacrylate) Grafted Poly(ethylene glycol) Methyl Ether Methacrylate and Lithium Bis(trifluoromethanesulfonimide), Electrochim. Acta, 175, 96-103, 2015.
  91. Li L., Wang F., Li J., Yang X., and You J., Electrochemical Performance of Gel Polymer Electrolyte with Ionic Liquid and PUA/PMMA Prepared by Ultraviolet Curing Technology for Lithium-Ion Battery, Int. J. Hydrog., 42, 12087-12093, 2017.
  92. Mazuki N.F., Kufian M.Z., Nagao Y., and Samsudin A.S., Correlation Studies Between Structural and Ionic Transport Properties of Lithium-Ion Hybrid Gel Polymer Electrolytes Based PMMA-PLA, J. Polym. Environ., 30, 1864-1879, 2022.
  93. Guan X., Chen F., Li Z., Zhou H., and Ma, X., Influence of a Rigid Polystyrene Block on the Free Volume and Ionic Conductivity of a Gel Polymer Electrolyte Based on Poly(methyl methacrylate)-block-Polystyrene, J. Appl. Polym. Sci., 133, 43901, 2016.
  94. Huang W., Zhu Z., Wang L., Wang S., Li H., Tao Z., Shi J., Guan L., and Chen J., Quasi-Solid-State Rechargeable Lithium-Ion Batteries with a Calix[4]quinone Cathode and Gel Polymer Electrolyte, Angew. Chem., Int. Ed. Engl., 52, 9162-9166, 2013.
  95. Abdollahi S., Sadadi H., Ehsani M., and Aram E., Highly Efficient Polymer Electrolyte Based on Electrospun PEO/PAN/Single-Layered Graphene Oxide, Ionics, 27, 3477-3487, 2021.
  96. Abdollahi S., Ehsani M., Morshedian J., Khonakdar H.A., and Aram E., Application of Response Surface Methodology in Assessing the Effect of Electrospinning Parameters on the Morphology of Polyethylene Oxide/Polyacrylonitrile Blend Nanofibers Containing Graphene Oxide, Polym. Bull., 76, 1755-1773, 2019.
  97. Ren W., Huang Y., Xu X., Liu B., Li S., Luo C., Li X., Wang M., and Cao H., Gel Polymer Electrolyte with High Performances Based on Polyacrylonitrile Composite Natural Polymer of Lignocellulose in Lithium Ion Battery, J. Mater. Sci., 55, 12249-12263, 2020.
  98. Kang S.H., Jang J.K., Jeong H.Y., So S., Hong S.K., Hong Y.T., Yoon S.J., and Yu D.M., Polyacrylonitrile/Phosphazene Composite-Based Heat-Resistant and Flame-Retardant Separators for Safe Lithium-Ion Batteries, ACS Appl. Energy Mater., 5, 2452-2461, 2022.
  99. Patel M., Gnanavel M., Bhattacharyya A.J., Utilizing an Ionic Liquid for Synthesizing a Soft Matter Polymer “Gel” Electrolyte for High Rate Capability Lithium-Ion Batteries, J. Mater. Chem. A, 21, 17419-17424, 2011.
  100. Liu B., Huang Y., Cao H., Zhao L., Huang Y., Song A., Lin Y., Ling X., and Wang M., A Novel Porous Gel Polymer Electrolyte Based on Poly(acrylonitrile-polyhedral oligomeric silsesquioxane) with High Performances for Lithium-Ion Batteries, J.  Membr. Sci., 545, 140-149, 2018.
  101. Flora X.H., Ulaganathan M., Babu R.S., and Rajendran, S., Evaluation of Lithium Ion Conduction in PAN/PMMA-Based Polymer Blend Electrolytes for Li-Ion Battery Applications, Ionics, 18, 731-736, 2012.
  102. Shen Z., Zhong J., Jiang S., Xie W., Zhan S., Lin K., Zeng L., Hu H., Lin G., Lin Y., and Sun S., Polyacrylonitrile Porous Membrane-Based Gel Polymer Electrolyte by In Situ Free-Radical Polymerization for Stable Li Metal Batteries, ACS Appl. Mater. Interfaces, 14, 41022-41036, 2022.
  103. Bi H., Sui G., and Yang X., Studies on Polymer Nanofibre Membranes with Optimized Core–Shell Structure as Outstanding Performance Skeleton Materials in Gel Polymer Electrolytes, J. Power Sources, 267, 309-315, 2014.
  104. Manafi P., Nazockdast H., Gomari S., Manafi M.R., Sedighi S., Bertoli L., and Magagnin L., Morphology and Electrochemical Properties of a Gel Blend Polymer Electrolyte Based on PVDF-HFP/PEO Blend, Iran. J. Polym. Sci. Technol. (Persian), 34, 55-69, 2021.
  105. Zhu M., Wu J., Wang Y., Song M., Long L., Siyal S.H., Yang X., and Sui G., Recent Advances in Gel Polymer Electrolyte for High-Performance Lithium Batteries, J. Energy Chem., 37, 126-142, 2019.
  106. Hou H., Huang B., Yu X., Lan J., Ming S., Rong J., Liu X., and Chen F., Compatible Composite Electrolyte Membrane Li7La3Zr2O12/SB-PVDF for Solid-State Lithium Ion Battery, J. Energy Storage, 68, 107680, 2023.
  107. Fasciani C., Panero S., Hassoun J., Scrosati B., Novel Configuration of Poly(vinylidenedifluoride)-Based Gel Polymer Electrolyte for Application in Lithium-Ion Batteries, J. Power Sources, 294, 180-186, 2015.
  108. Zhang M.Y., Li M.X., Chang Z., Wang Y.F., Gao J., Zhu Y.S., Wu Y.P., and Huang W., A Sandwich PVDF/HEC/PVDF Gel Polymer Electrolyte for Lithium Ion Battery, Electrochim. Acta, 245, 752-759, 2017.
  109. Zhang P., Li R., Huang J., Liu B., Zhou M., Wen B., Xia Y., and Okada S., Flexible Poly(vinylidene fluoride-co-hexafluoropropylene)-Based Gel Polymer Electrolyte for High-Performance Lithium-Ion Batteries, RSC Adv., 11, 11943-11951, 2021.
  110. Kuo P.L., Tsao C.H., Hsu C.H., Chen S.T., and Hsu H.M., A New Strategy for Preparing Oligomeric Ionic Liquid Gel Polymer Electrolytes for High-Performance and Nonflammable Lithium Ion Batteries, J. Membr. Sci., 499, 462-469, 2016.
  111. Luo K., Shao D., Yang L., Liu L., Chen X., Zou C., Wang D., Luo Z., and Wang X., Semi-Interpenetrating Gel Polymer Electrolyte Based on PVDF-HFP for Lithium Ion Batteries, J. Appl. Polym. Sci., 138, 49993, 2021.
  112. Li J., Zhu L., Xu J., Jing M., Yao S., Shen X., Li S., and Tu F., Boosting the Performance of Poly(ethylene oxide)-Based Solid Polymer Electrolytes by Blending with Poly(vinylidene fluoride-co-hexafluoropropylene) for Solid-State Lithium-Ion Batteries, Int. J. Energy Res., 44, 7831-7840, 2020.
  113. Yang T., Chin C.T., Cheng C.H., and Zhao J., Silane-Modified Li6.4La3Zr1.4Ta0.6O12 in Thermoplastic Polyurethane-Based Polymer Electrolyte for All-Solid-State Lithium Battery, J. Solid State Electrochem., 27, 2509-2521, 2023.
  114. Zhao Z., Wu B., Zhang Y., Cui J., Zhang L., Su Y., and Wu F., A Promising Composite Solid Electrolyte of Garnet-Type LLZTO and Succinonitrile in Thermal Polyurethane Matrix for All-Solid-State Lithium-Ion Batteries, Electrochem. Commun., 150, 107472, 2023.
  115. Li C., Ou L., Liu Y., Xu L., Zhou S., Guo L., Liu H., Zhang Z., Cui M., Chen G., and Huang J., A Cellulose/Polyethylene Oxide Gel Polymer Electrolyte with Enhanced Mechanical Strength and High Ionic Conductivity for Lithium-Ion Batteries, Adv. Mater. Technol., 8, 2202002, 2023.
  116. Ghasemzadeh Mohammadi H., Jamshidbeigi S., and Dargahi M., Nanomagnetic Hydrogels Based on Carboxymethylcellulose/Diatomaceous Earth Grafted with Acrylamide for Adsorption of Cationic Crystal Violet Dye, Iran. J. Polym. Sci. Technol. (Persian), 31, 171-185, 2018.
  117. Xiao S., Wang F., Yang Y., Chang Z., and Wu Y., An Environmentally Friendly and Economic Membrane Based on Cellulose as a Gel Polymer Electrolyte for Lithium Ion Batteries, RSC Adv., 4, 76-81, 2014.
  118. Zhu Y.S., Xiao S.Y., Li M.X., Chang Z., Wang F.X., Gao J., and Wu Y.P., Natural Macromolecule Based Carboxymethyl Cellulose as a Gel Polymer Electrolyte with Adjustable Porosity for Lithium Ion Batteries, J. Power Sources, 288, 368-375, 2015.
  119. Andersson R., Hernández G., See J., Flaim T.D., Brandell D., and Mindemark J., Designing Polyurethane Solid Polymer Electrolytes for High-Temperature Lithium Metal Batteries, ACS Appl. Energy Mater., 5, 407-418, 2022.
  120. Bao J., Qu X., Qi G., Huang Q., Wu S., Tao C., Gao M., and Chen C., Solid Electrolyte Based on Waterborne Polyurethane and Poly(ethylene oxide) Blend Polymer for All-Solid-State Lithium Ion Batteries, Solid State Ion., 320, 55-63, 2018.
  121. Liu K., Liu M., Cheng J., Dong S., Wang C., Wang Q., Zhou X., Sun H., Chen X., and Cui G., Novel Cellulose/Polyurethane Composite Gel Polymer Electrolyte for High Performance Lithium Batteries, Electrochim. Acta, 215, 261-266, 2016.
  122. Mindemark J., Sun B., Torma E., and Brandell D., High Performance Solid Polymer Electrolytes for Lithium Batteries Operational at Ambient Temperature, J. Power Sources, 298,166-170, 2015.
  123. Fonseca C.P., Rosa D.S., Gaboardi F., and Neves S., Development of a Biodegradable Polymer Electrolyte for Rechargeable Batteries, J. Power Sources, 155, 381-384, 2006.
  124. Hadad S., Hamrahjoo M., Dehghani E., Salami-Kalajahi M., Eliseeva S.N. and Roghani-Mamaqani H., Semi-Interpenetrated Polymer Networks Based on Modified Cellulose and Starch as Gel Polymer Electrolytes for High Performance Lithium Ion Batteries, Cellulose, 29, 3423-3437, 2022.
  125. Stephan A.M., Kumar T.P., Kulandainathan M.A., and Lakshmi N.A., Chitin-Incorporated Poly(ethylene oxide)-Based Nanocomposite Electrolytes for Lithium Batteries, J. Phys. Chem. B, 113, 1963-1971, 2009.
  126. Chen J., Wang C., Wang G., Zhou D., and Fan L.Z., An Interpenetrating Network Polycarbonate-Based Composite Electrolyte for High-Voltage All-Solid-State Lithium-Metal Batteries, Energy Mater., 2, 1-13, 2022.
  127. Zhou D., Zhou R., Chen C., Yee W. A., Kong J., Ding G., and Lu X., Non-Volatile Polymer Electrolyte Based on Poly(propylene carbonate), Ionic Liquid, and Lithium Perchlorate for Electrochromic Devices, J. Phys. Chem. B, 117, 7783-7789, 2013.
  128. Zhao J., Zhang J., Hu P., Ma J., Wang X., Yue L., Xu G., Qin B., Liu Z., Zhou X., and Cui G., A Sustainable and Rigid-Flexible Coupling Cellulose-Supported Poly(propylene carbonate) Polymer Electrolyte Towards 5V High Voltage Lithium Batteries, Electrochim. Acta, 188, 23-30, 2016.
  129. Wang Q., Song W.L., Wang L., Song Y., Shi Q., and Fan L.Z., Electrospun Polyimide-Based Fiber Membranes as Polymer Electrolytes for Lithium-Ion Batteries, Electrochim. Acta, 132, 538-544, 2014.
  130. Chai J., Liu Z., Ma J., Wang J., Liu X., Liu H., Zhang J., Cui G., and Chen L., In Situ Generation of Poly(vinylene carbonate) Based Solid Electrolyte with Interfacial Stability for LiCoO2 Lithium Batteries, Adv. Sci., 4, 1600377, 2017.
  131. Li J., Lin Y., Yao H.H., Yuan C.F., and Liu J., Tuning Thin-Film Electrolyte for Lithium Battery by Grafting Cyclic Carbonate and Combed Poly(ethylene oxide) on Polysiloxane, ChemSusChem, 7, 1901-1908, 2014.
  132. Sohn J.Y., Choi J.H., Kim P.W., Hwang I.T., Shin J., Jung C.H., and Lee Y.M., In-Situ Preparation of Chemically-Crosslinked Polyvinylpyrrolidone Gel Polymer Electrolyte for Lithium Ion Battery via Room-Temperature Electron Beam-Induced Gelation, Radiat. Phys. Chem., 211, 111047, 2023.
  133. Chi S.K. and Seung M.O., Importance of Donor Number in Determining Solvating Ability of Polymers and Transport Properties in Gel-Type Polymer Electrolytes, Electrochim. Acta, 45, 2101-2109, 2000.
  134. Tarascon J.M., Key Challenges in Future Li-Battery Research,  Philos. Trans. A: Math. Phys. Eng. Sci., 368, 3227-3241, 2010.
  135. Li C., Wang Z.Y., He Z.J., Li Y.J., Mao J., Dai K.H., Yan C., and Zheng J.C., An Advance Review of Solid-State Battery: Challenges, Progress and Prospects, Sustain. Mater. Technol., 29, e00297, 2021.
  136. Ren W., Ding C., Fu X., and Huang Y., Advanced Gel Polymer Electrolytes for Safe and Durable Lithium Metal Batteries: Challenges, Strategies, and Perspectives, Energy Storage Mater., 34, 515-535, 2021.
  137. Mohammadi M., Mehdipour-Ataei S., The Role and Characteristics of the Polymeric Membrane in Vanadium Redox Flow Battery: A Review, Iran. J. Polym. Sci. Technol. (Persian), 35, 411-434, 2023.
  138. Mohammadi M. and Mehdipour-Ataei S., and Mohammadi N., Polymeric Membranes as Battery Separators, Membrane Potential: An Overview, Nava Scienc, 2019.