ساخت غشای دولایه نانوصافشی بر پایه پلی‌اترسولفون با استفاده از لایه نانوکامپوزیتی کیتوسان-زئولیت

نوع مقاله : پژوهشی

نویسندگان

اراک، دانشگاه اراک، دانشکده فنی و مهندسی، گروه مهندسی شیمی، کد پستی 8349-8-38156

چکیده

فرضیه‌: در این پژوهش، اثر شکل‌گیری لایه فعال نانوکامپوزیتی کیتوسان-زئولیت بر خواص ساختاری، ‌شیمی-فیزیکی و جداسازی و عملکرد ضدجرم‌گرفتگی غشای نانوصافشی بر پایه پلی‌اترسولفون مطالعه شد.
روش‌ها: غشای پایه نانوصافشی با روش تغییر فاز تهیه شد و سپس به‌کمک روش غوطه‌وری عمقی در محلول پلیمری اصلاح سطحی شد. مشخصات غشاهای تهیه‌شده با آزمون‌های زیر‌قرمز تبدیل فوریه، عکس‌های الکترونی ‌پویشی، پراش‌سنجی پرتو X، عکس‌های‌ سه‌‌بعدی سطح، زاویه‌ تماس، محتوای ‌آب، شار آب‌ خالص، پس‌زنی ‌نمک و  فلز سنگین و عملکرد ضدجرم‌گرفتگی ارزیابی شد.
یافته‌ها: نتایج آزمون طیف‌‌سنجی زیر‌قرمز تبدیل فوریه، شکل‌گیری لایه نانوکامپوزیتی کیتوسان-زئولیت را بر سطح غشای پایه پلی‌اترسولفون تأیید کرد. همچنین، عکس‌های ‌الکترونی ‌پویشی‌‌ از سطح و مقطع عرضی غشاهای تهیه‌شده ایجاد ‌لایه‌ فعال روی ‌سطح ‌غشا را نشان می‌دهد. نتایج بررسی سطح غشا نشان می‌دهد، اصلاح سطح غشا سبب کاهش زبری‌ سطح شده است. به‌کارگیری نانوذرات زئولیت در لایه سطحی باعث افزایش مقدار محتوای آب غشا شد. شار آب ‌خالص غشای اصلاح‌شده دولایه %54 نسبت به غشای پایه افزایش یافت. همچنین مقدار پس‌زنی نمک سدیم سولفات ‌برای غشای اصلاح‌شده دولایه بیش از %70 اندازه‌گیری شد. مقدار جداسازی یون کروم نیز از %69 برای غشا پایه به %95 برای غشای اصلاح‌شده افزایش یافت. نتایج اندازه‌گیری زاویه تماس آب نشان داد، خاصیت ‌آب‌‌دوستی سطحی غشاها در اثر اصلاح سطح افزایش یافته است. افزون بر این،‌ غشای اصلاح‌‌شده‌ دولایه خاصیت ضدجرم‌گرفتگی ‌زیادی نشان داد، به‌طوری‌ که مقدار بازیابی شار از %85 به %93.6 افزایش و مقدار‌ مقاومت بازگشت‌ناپذیر از %15 به %6.4 کاهش یافت.

کلیدواژه‌ها


عنوان مقاله [English]

Fabrication of Bi-layer Polyethersulfone-based Nanofiltration Membrane Using Chitosan/Zeolite Nanocomposite Layer

نویسندگان [English]

  • Mahdi Najafpour
  • Zahra Jiriaei Sharahi
  • Saba Sohrabnejad
  • Sahar Karami
  • Sayed Mohsen Hosseini
Department of Chemical Engineering, Faculty of Engineering, Arak University, Postal Code 38156-8-8349, Arak Iran
چکیده [English]

Hypothesis: This study constituted the effect of chitosan-zeolite active nanocomposite layer formation on the morphological, physico-chemical and separation properties, as well as the anti-fouling performance of the polyethersulfone-based nanofiltration membrane.
Methods: The nanofiltration-based membrane was prepared by phase inversion method and its surface was modified through the dip-coating technique in the polymeric solution. The properties of the prepared membranes were investigated by Fourier transform infrared (FTIR) analysis, scanning electron microscopy (SEM), 3D surface images, contact angle, water content, pure water flux, salt and heavy metal rejection and anti-fouling performance techniques. 
Findings: The FTIR analysis results confirmed the formation of the chitosan/zeolite nanocomposite layer on the polyether sulfone-based membrane. Moreover, the scanning electron microscopy images of the surface and cross-section of the prepared membranes showed the formation of an active layer on the membrane surface. The results of surface analysis showed that the surface modification reduced the surface roughness of the membrane. In addition, the use of zeolite nanoparticles on the surface layer caused to an increase in the membrane water content. The pure water flux of bi-layer modified membrane showed an increase in water content of > 54% compared to the virgin membrane. The sodium sulfate salt rejection was measured > 70% for the bi-layer modified membrane. The chromium rejection increased from 69% for the virgin membrane to > 95% for the modified bi-layer membrane. The water contact angle results exhibited that the surface hydrophilicity of the membrane increased with the surface modification. The modified membranes showed superior antifouling ability as the flux recovery ratio increased from 85% to 93.6% and the irreversible resistance decreased considerably to 6.4%.

کلیدواژه‌ها [English]

  • Nanofiltration
  • Bi-layer membrane
  • Nanocomposite
  • Chitosan/Zeolite
  • Heavy metals removal
  1. Hosseini S.M., Rabiei Karahroudi N., Rafiei M., Ahmadi A., and Sadra Solhi S., Fabrication of Thin Film Heterogeneous Cation Exchange Membrane in Chitosan Nanocomposite Layer with Copper Oxide Nanoparticles, J. Polym. Sci. Technol. (Persian), 34, 283-297, 2022.
  2. Macknick J., Newmark R., Heath G., and Hallett K.C., A Review of Operational Water Consumption and Withdrawal Factors for Electricity Generating Technologies, Contract, 313, 275-311, 2011.
  3. Hosseini S.M., Nemati M., and Rafiei N., Surface Modification of Cation Exchange Membranes Using Chitosan-co-PANI/Graphene Oxide Nanocomposite Layer, J. Polym. Sci. Technol. (Persian), 31, 435-446, 2018.
  4. Sayes C.M., Fortner J.D., Guo W., Boyd M.D., Ausman K.D., Tao Y.J., Sitharaman B., Wilson L.J., Hughes J.B., West J.L., and Colvin V.L., The Differential Cytotoxicity of Water-Soluble Fullerenes, Nano Lett, 4, 1221-1227, 2014.
  5. Mirzamohammadi M., Koudzari Farahani S., Parvizian F., and Hosseini S.M., Surface Modification of Nanofiltration Membrane Using Polyvinyl Alcohol and Chitosan-Functionalized Activated Carbon Nanoparticles, J. Polym. Sci. Technol. (Persian), 4, 349-358, 2021.
  6. Radcliffe D.O., Walters M.J., Ainscough T., Williams M.P., Mohammad A.W., and Hilal N., Nanofiltration Membranes and Processes: A Review of Research Trends Over the Past Decade, Water Process Eng., 19, 164-171, 2017.
  7. Lofrano G., Carotenuto M., Libralato G., Domingos R.F., Markus A., Dini L., Gautam R.K., Baldantoni D., Rossi M., amd Sharma S.K., Polymer Functionalized Nanocomposites for Metals Removal from Water and Wastewater: An Overview, Water Res., 92, 22-37, 2016.
  8. Dutta K. and De S., Aromatic Conjugated Polymers for Removal of Heavy Metal Ions from Wastewater: A Short Review, Sci. Water Res. Technol., 3, 793-805, 2017.
  9. Karami S., Jiriaei Sharahi Z., Koudzari Farahani S., Solhi S., and Hosseini S.M., Novel Thin-Film, Chitosan-Polyaniline Nanofiltration Membrane Effectively Removes Toxic Heavy Metals from Wastewaters, J. Toxic., 17, 105-116, 2023.
  10. Koyuncu I. and Topacik D., Effect of Organic Ion on the Separation of Salts by Nanofiltration Membranes, Membr. Sci., 195, 247-263, 2002.
  11. Song Y.J., Sun P., Henry L.L., and Sun B.H., Mechanisms of Structure and Performance Controlled Thin Film Composite Membrane Formation via Interfacial Polymerization Process, Membr. Sci., 251, 67-79, 2005.
  12. Zhang Y.F., Xiao C.F., Liu E.H., Du Q.Y., Wang X., and Yu H.L., Investigations on the Structures and Performances of a Polypiper-Azine Amide/Polysulfone Composite Membrane, Desalination, 191, 291-295, 2006.
  13. Du R.H. and Zhao J.S., Properties of Poly(N,N-dimethyl aminoethyl methac-rylate)/Polysulfone Positively Charged Composite Nanofiltration Membrane, Membr. Sci., 239, 183-188, 2004.
  14. Ghaee A., Shariaty-Niassar M., Barzin J., and Matsuura T., Effects of Chitosan Membrane Morphology on Copper Ion Adsorption, Chem. Eng., 165, 46-55, 2010.
  15. Chiang Y., Hsub Y., Ruaan R., Chuang C., and Tung K., Nanofiltration Membranes Synthesized from Hyperbranched Polyethyleneimine, Membr. Sci., 326, 19-26, 2009.
  16. Wang L., Boutilier M.S.H., Kidambi P.R., Jang D., Hadjiconstantinou N.G., and Karnik R., Fundamental Transport Mechanisms, Fabrication and Potential Applications of Nanoporous Atomically Thin Membranes, Nanotechnol., 12, 509-522, 2017.
  17. Somrani A., Hamzaoui A.H., and Pontie M., Study on Lithium Separation from Salt Lake Brines by Nanofiltration (NF) and Low Pressure Reverse Osmosis (LPRO), Desalination, 317, 84-192, 2013.
  18. Li X., Li J., Fang X., Bakzhan K., Wang L., and Van der Bruggen B., A Synergetic Analysis Method for Antifouling Behavior Investigation on PES Ultrafiltration Membrane with Self-Assembled TiO2 Nanoparticles, Colloid Interface Sci., 469, 164-176, 2016.
  19. Rong G., Hua D., Cuihua L., Jianhong L., and Jing X., Effect of Casting Solvent on the Morphology and Performance of Sulfonated Polyether Sulfone Membranes, Membr. Sci., 277, 148-156, 2006.
  20. Tang C.Y., Kwon Y.N., and Leckie J.O., Probing the Nanoand Micro-scales of Reverse Osmosis Membranes-A Comprehensive Characterization of Physiochemical Properties of Uncoated and Coated Membranes by XPS, TEM, ATRFTIR, and Streaming Potential Measurements, Membr. Sci., 287, 146-156, 2007.
  21. Xu G.R., Wang J., and Li C.J., Strategies for Improving the Performance of the Polyamide Thin Film Composite (PA-TFC) Reverse Osmosis (RO) Membranes: Surface Modifications and Nanoparticles Incorporations, Desalination, 328, 83-100, 2013.
  22. Bhattacharya A. and Misra B.N., Grafting: A Versatile Means to Modify Polymers Techniques, Factors and Applications, Polym. Sci., 29, 767-814, 2004.
  23. Zareei F., Bandehali S., Ebrahimi M., and Hosseini S.M., Fabrication and Investigation of Separation Performance and Antifouling Properties of Mixed Matrix PES-Based Nanofiltration Membrane Containing Cobalt-Ferrite Nanoparticles, J. Polym. Sci. Technol. (Persian), 33, 385-400, 2021.
  24. Shenvi S.S., Rashid S.A., Ismail A.F., Kassim M.A., and Isloor A.M., Preparation and Characterization of PPEES/Chitosan Composite Nanofiltration Membrane, Desalination, 315, 135-141, 2013.
  25. Kim S.G., Hyeon D.H., Chun J.H., Chun B.H., and Kim S.H., Nanocomposite Poly(arylene ether sulfone) Reverse Osmosis Membrane Containing Functional Zeolite Nanoparticles for Seawater Desalination, Membr. Sci., 443, 10-18, 2013.
  26. Bagheripour E., Moghadassi A.R., Hosseini S.M., Ray M.B., Parvizian F., and Van der Bruggen B., Highly Hydrophilic and Antifouling Nanofiltration Membrane Incorporated with Water-Dispersible Composite Activated Carbon/Chitosan Nanoparticles, Eng. Res. Des., 132, 812-821, 2018.
  27. Xu J., Feng X., and Gao C., Surface Modification of Thin-Film-Composite Polyamide Membranes for Improved Reverse Osmosis Performance, Membr. Sci., 370, 116-123, 2011.
  28. Ma N., Wei J., Liao R., and Tang C.Y., Zeolite-Polyamide Thin Film Nanocomposite Membranes: Towards Enhanced Performance for Forward Osmosis, Membr. Sci., 405-406, 49-157, 2012.
  29. Hu Y., Wang M., Wang D., Gao X., and Gao C., Feasibilit Study on Surface Modification of Cation Exchange Membranes by Quaternized Chitosan for Improving Its Selectivity, J Membr. Sci., 319, 5-9, 2008.
  30. Shukla S.K., Mishra A.K., Arotiba O.A., and Mamba B.B., Chitosan-Based Nanomaterials: A State-of-the-Art Review, J. Biol. Macromol., 59, 46-58, 2013.
  31. Bandehali S., Parvizian F., Moghadassi A., and Hosseini S.M., Nanomaterials for the Efficient Abatement of Wastewater Contaminants by Means of Reverse Osmosis and Nanofiltration, Nanomaterials for the Detection and Removal of Wastewater Pollutants Micro and Nano Technologies, Elsevier, 111-144, 2020.
  32. Pabalan R.T. and Bertetti F.P., Cation-Exchange Properties of Natural Zeolites, Mineral Geochem., 45, 453-517, 2001.
  33. Rahimpour A., UV Photo-Grafting of Hydrophilic Monomers onto the Surface of Nano-porous PES Membranes for Improving Surface Properties, Desalination, 265, 93-101, 2011.
  34. Mansourpanah Y., Madaeni S., Rahimpour A., Farhadian A., and Taheri A., Formation of Appropriate Sites on Nanofiltration Membrane Surface for Binding TiO2 Photo-Catalyst: Performance, Characterization and Fouling Resistant Capability, Membr. Sci., 330, 297-306, 2009.
  35. Louie J.S., Pinnau I., Ciobanu I., Ishida K.P., Ng A., and Reinhard M., Effects of Polyether-Polyamide Block Copolymer Coating on Performance and Fouling of Reverse Osmosis Membranes, Membr. Sci., 280,762-770, 2006.
  36. Abdi G., Alizadeh A., Zinadani S., and Moradi G., Removal of Dye and Heavy Metal Ions Using Novel Synthetic Polyethersulfune Nanofiltration Membrane Modi-Fied by Magnetic Graphene Oxide/Metformin Hybrid, Membr. Sci., 552, 326-335, 2018.
  37. Zhu S., Zhao S., Wang Z., Tian X., Shi M., Wang J., and Wang S., Improved Performance of Polyamide Thin-Film Composite Nanofiltration Membrane by Using Polyetersulfone/Polyaniline Membrane as the Substrate, Membr. Sci., 493, 263-274, 2015.
  38. Fan L., Luo C., Li X., Lu F., Qiu H., and Sun M., Fabrication of Novel Magnetic Chitosan Grafted with Grapheme Oxide to Enhance Adsorption Prpperties for Methyl Blue, Hazard. Mater., 215, 272-279, 2012.
  39. Dong H., Zhao L., Zhang L., Chen H., Gao C., and Winston Ho W.S., High-Flux Reverse Osmosis Membranes Incorporated with NaY Zeolite Nanoparticles for Brackish Water Desalination, Membr. Sci., 476, 373-383, 2015.
  40. Hamidi A.R., Moghadassi A.R., Hosseini S.M., and Madaeni S.S., Electro-Chemical Characterization of Adsorptive Heterogeneous Cation Exchange Membranes Modified by Simultaneous Using Ilmenite-co-Iron Oxide Nanoparticles, Korean J. Chem. Eng., 32, 429-435, 2015.
  41. Hosseini S.M., Banijamali M.S., Farahani S.K., and Bandehali S., Enhancing Antifouling and Separation Characteristics of Carbon Nanofiber Embedded Polyether Sulfone Nanofiltration Membrane, Korean J. Chem. Eng., 39, 2491-2498, 2022.
  42. Hosseini S.M., Madaeni S.S., and Khodabakhshi A.R., The Electrochemical Characterization of Ion Exchange Membranes in Different Electrolytic Environments: Investigation of Concentration and pH Effects, Sci. Technol., 47, 455-462, 2012.
  43. Vatanpor V., Madaeni S.S., Moradian R., Zinadini S., and Astinchap B., Fabrication and Characterization of Novel Antifouling Nanofiltration Membrane Prepared from Oxidized Multiwalled Carbon Nanotube/Polyethersulfone Nanocomposite, J. Membr. Sci., 375, 284-294, 2011.