زخم‌پوش‌های برپایه هیالورونیک اسید

نوع مقاله : مروری

نویسندگان

1 تهران، دانشگاه شهید بهشتی، دانشکده علوم شیمی و نفت، گروه پلیمر و شیمی مواد، کد پستی 1983969411

2 تهران، دانشگاه صنعتی شریف، دانشکده مهندسی شیمی و نفت، کد پستی 1458889694

3 تهران، پژوهشگاه رنگ، گروه پوشش‌های سطح و خوردگی، کد پستی 1668836471

4 تهران، پژوهشگاه رویان، پژوهشکده زیست‌شناسی و فناوری سلول‌های بنیادی جهاد دانشگاهی، مرکز تحقیقات علوم سلولی، گروه مهندسی سلول، صندوق پستی 148-16635

5 تهران، دانشگاه الزهرا، دانشکده میکروبیولوژی، کد پستی 1993893973

6 تهران، دانشگاه صنعتی خواجه نصیر طوسی، دانشکده شیمی، کد پستی 1541849611

7 تهران، دانشگاه شهید بهشتی، دانشکده علوم و فناوری زیستی، گروه علوم جانوری و زیست‌شناسی دریا، کد پستی 198396411

8 تهران، دانشگاه علامه طباطبایى، دانشکده مدیریت و حسابدارى، کد پستی 1489684511

9 تهران، دانشگاه صنعتی امیرکبیر، دانشکده مهندسی نساجی، کد پستی 1591634311

10 تهران، پژوهشگاه رویان، پژوهشکده زیست‌شناسی و فناوری سلول‌های بنیادی جهاد دانشگاهی، مرکز تحقیقات علوم سلولی، گروه مهندسی سلول، کد پستی 1651153511

چکیده

رشد روزافزون جمعیت جهان و افزایش بیماری‌های زمینه‌ای همچون دیابت، موجب روند فزاینده‌ آسیب‌های پوستی و تحمیل هزینه‌های گزاف بر نظام سلامت شده است. پیچیدگی و فرایند چندمرحله‌ای ترمیم زخم، اهمیت معرفی محصولات کارآمد به‌منظور ارائه‌ درمان مؤثر آسیب‌های پوستی را نمایان می‌سازد. از این رو، معرفی محصولات نوین ترمیم زخم برای درمان مؤثر این نوع آسیب‌ها ضروری است. استفاده از زخم‌پوش‌های نوین در سال‌های اخیر مورد توجه قرار گرفته است. این زخم‌پوش‌ها با فراهم‌آوردن شرایط فیزیکی و زیستی مناسب، بازسازی پوست را آسان می‌کنند. زخم‌پوش‌ها با اشکال اسفنجی، لیفی، هیدروژلی، فیلمی و پودری برای درمان زخم‌های مختلف تولید می‌شوند. زیست‌مواد طبیعی و سنتزی گوناگون برای ساخت این محصولات استفاده شده‌اند که از میان آن‌ها، هیالورونیک اسید (HA) به‌دلیل ویژگی‌های مطلوب زیستی از اهمیت ویژه‌ای برخوردار است. این ماده به‌عنوان یکی از اجزای اصلی تشکیل‌دهنده ماتریس برون‌یاخته‌ای پوست، به طور مستقیم در مراحل چهارگانه‌ ترمیم زخم اثرگذار است. این ویژگی‌های زیستی به همراه آب‌دوستی زیاد موجب توجه ویژه به این ماده به‌عنوان گزینه‌ای امیدبخش در ترمیم آسیب‌های پوستی شده است. در این مقاله، پس از بیان ساختار پوست و انواع زخم‌ها، فرایند ترمیم زخم توضیح داده می‌شود. سپس، زخم‌پوش‌های سنتی و تجاری و انواع آن‌ها معرفی می‌شوند. در ادامه، پس از معرفی رایج‌ترین زیست‌مواد استفاده‌شده برای ساخت زخم‌پوش‌ها، ساختار هیالورونیک اسید، سازوکار تخریب و نیز نقش این ماده در مراحل مختلف ترمیم زخم به‌تفصیل شرح داده می‌شوند. همچنین انواع زخم‌پوش‌های بر پایه هیالورونیک اسید معرفی می‌شوند. در نهایت، انواع زخم‌پوش‌های تجاری بر پایه این پلیمر معرفی شده و مروری بر بازار جهانی زخم‌پوش‌ها برای ترسیم چشم‌انداز مصرف این محصولات ارائه می‌شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Hyaluronic Acid-Based Wound Dressings

نویسندگان [English]

  • Sarvenaz Pakian 1
  • Maryam Alizadeh 2
  • Alireza Mouraki 3
  • Maryam Tavakolizadeh 4
  • Kimia Samadi 5
  • Maryam Radpour 6
  • Ali Amirian 7
  • Ailin Javidi 8
  • Zahra Mohammadi Ghermezgoli 9
  • Hamed Daemi 10
1 Department of Polymer and Materials Chemistry, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, Postal Code: 1983969411, Tehran, Iran
2 Department of Chemical & Petroleum Engineering, Sharif University of Technology, Postal Code: 1458889694, Tehran, Iran
3 Department of Surface Coatings and Corrosion, Institute for Color Science and Technology, Postal Code: 1668836471, Tehran, Iran
4 Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, P.O. Box: 16635- 148, Tehran, Iran
5 Department of Microbiology, Alzahra University, Postal Code: 1993893973, Tehran, Iran
6 Faculty of Chemistry, Khajeh Nasir Toosi University of Technology, Postal Code: 1541849611, Tehran, Iran
7 Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Postal Code: 198396411, Tehran, Iran
8 Department of Technology and Entrepreneurship Management, Allameh Tabataba'i University, Postal Code: 1489684511 , Tehran, Iran
9 Department of Textile Engineering, Amirkabir University of Technology, Postal Code: 1591634311, Tehran, Iran
10 Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, P.O. Box: 16635- 148, Tehran, Iran
چکیده [English]

The growing world's population and the increase of underlying diseases such as diabetes have caused an increasing trend of skin damage and imposed high costs on the healthcare system. The complex and multi-step nature of wound healing highlights the importance of introducing efficient products for effective treatment of skin injuries. Therefore, it is necessary to introduce new wound healing products to treat these types of injuries effectively. The modern wound dressings have received much attention in recent years. These dressings facilitate skin regeneration by providing suitable physical and biological conditions. Wound dressings are produced in sponge, fibrous, hydrogel, film, and powder forms to treat different wounds. Various natural and synthetic biomaterials have been used to make these products, among which hyaluronic acid (HA) is particularly important due to its unique biological properties. As one of the main constituents of the skin's extracellular matrix, this substance is directly effective in the four stages of wound healing. These biological characteristics and high hydrophilicity have attracted special attention to this material as a promising option for repairing skin damage. In this article, the wound healing process is explained after describing the skin structure and types of wounds. Then, traditional and commercial dressings and their types are introduced. In the following, by introducing the most common biological materials used to make wound dressings, the structure of HA, the mechanism of degradation, and the role of this material in different stages of wound healing are described in detail. Also different types of HA-based wound dressings in the literature are discussed. Finally some types of commercial wound dressings based on this polymer are introduced and an overview of the global market for wound dressings is provided to outline the perspective of the consumption of these products.

کلیدواژه‌ها [English]

  • Wound dressing
  • Hyaluronic acid
  • Skin
  • Wound healing
  • Wound
  1. Yadav N., Parveen S., Chakravarty S., and Banerjee M., Skin Aging Cancer, Springer, Singapour, 1-10, 2019.
  2. Pereira R.F., Sousa A., Barrias C.C., Bayat A., Granja P.L., and Bártolo P.J., Advances in Bioprinted Cell-Laden Hydrogels for Skin Tissue Engineering, Biomanufacturing Rev., 2, 1-26, 2017.
  3. Gilaberte Y., Prieto-Torres L., Pastushenko I., and Juarranz Á., Nanoscience in Dermatology, Academic, Boston, 1-14, 2016.
  4. Kolarsick P.A.J., Kolarsick M.A., and Goodwin C., Anatomy and Physiology of the Skin, J. Dermatol. Nurses. Assoc., 3, 203-213, 2011.
  5. Fletcher J., Differences between Acute and Chronic Wounds and the Role of Wound Bed Preparation, Nurs. Stand., 22, 62-68, 2008.
  6. Larouche J., Sheoran S., Maruyama K., and Martino M.M., Immune Regulation of Skin Wound Healing: Mechanisms and Novel Therapeutic Targets, Adv. Wound Care, 7, 209-231, 2018.
  7. Lazarus G.S., Cooper D.M., Knighton D.R., Percoraro R.E., Rodeheaver G., and Robson M.C., Definitions and Guidelines for Assessment of Wounds and Evaluation of Healing, Wound Repair Regen., 2, 165-170, 1994.
  8. Sadeghi A., Zare-Gachi M., Najjar-Asl M., Rajabi S., Fatemi M.J., Forghani S.F., Daemi H., and Pezeshki-Modaress M.,
    Hybrid Gelatin-Sulfated Alginate Scaffolds as Dermal Substitutes Can Dramatically Accelerate Healing of Full-Thickness
    Diabetic Wounds, Carbohydr. Polym., 302, 120404, 2023.
  9. Jones R.E., Foster D.S., and Longaker M.T., Management of Chronic Wounds, J. Am. Med. Assoc., 320, 1481–1482, 2018.
  10. Abazari M., Ghaffari A., Rashidzadeh H., Badeleh S.M., and Maleki Y., A Systematic Review on Classification, Identification,
    and Healing Process of Burn Wound Healing, Int. J. Low. Extrem. Wounds, 1, 18-30, 2020.
  11. Brusselaers N., Pirayesh A., Hoeksema H., Richters C.D., Verbelen J., Beele H., Blot S.I. and Monstrey S., Skin Replacement in Burn Wounds, J. Trauma Acute Care Surg., 68, 490-501, 2010.
  12. Jelodari S., Daemi H., Mohammadi P., Verdi J., Al-Awady M., Ai J., and Azami M., Assessment of the Efficacy of an ll-37-Encapsulated Keratin Hydrogel for the Treatment of Full-Thickness Wounds, ACS Appl. Bio Mater., 6, 2122-2136, 2023.
  13. Tavakoli S. and Klar A.S., Advanced Hydrogels as Wound Dressings, Biomolecules, 10, 1-20, 2020.
  14. Cullum N., Buckley H., and Dumville J., Wounds Research for Patient Benefit: A 5 Year Programme of Research, Health
    Technol. Assess. (Rockv)
    , 1-303, 2016.
  15. Sen C.K., Human Wounds and Its Burden: An Updated Compendium of Estimates, Adv. Wound Care, 2, 39-48, 2019.
  16. Moura L.I., Dias A.M., Carvalho E., and de Sousa H.C., Recent Advances on the Development of Wound Dressings for Diabetic Foot Ulcer Treatment - A Review, Acta Biomater., 9, 7093-7114, 2013.
  17. Dhivya S., Padma V.V., and Santhini E., Wound Dressings - A Review, Biomedicine, 5, 24-28, 2015.
  18. Niculescu A.G. and Grumezescu A.M., An Up-to-Date Review of Biomaterials Application in Wound Management, Polymers (Basel), 14, 1-24, 2022.
  19. Simões D., Miguel S.P., Ribeiro M.P., Coutinho P., Mendonça A.G., and Correia I.J., Recent Advances on Antimicrobial Wound Dressing: A Review, Eur. J. Pharm. Biopharm., 127, 130-141, 2018.
  20. Dabiri G., Damstetter E., and Phillips T., Choosing a Wound Dressing Based on Common Wound Characteristics, Adv. Wound Care, 5, 32-41, 2016.
  21. Kujath P. and Michelsen A., Wounds, from Physiology to Wound Dressing, Dtsch. Arztebl. Int., 105, 239-248, 2008.
  22. Moore Z.E.H. and Webster J., Dressings and Topical Agents for Preventing Pressure Ulcers, Cochrane Database Syst. Rev., 12, 6-12, 2018.
  23. El Ayadi A., Jay J.W., and Prasai A., Current Approaches Targeting the Wound Healing Phases to Attenuate Fibrosis and Scarring, Int. J. Mol. Sci., 21, 1105-1116, 2020.
  24. Baei P., Daemi H., Aramesh F., Baharvand H., and Eslaminejad M.B., Advances in Mechanically Robust and Biomimetic Polysaccharide-Based Constructs for Cartilage Tissue Engineering, Carbohydr. Polym., 308, 120650, 2023.
  25. Nazemi Z., Nourbakhsh M.S., Kiani S., Heydari Y., Ashtiani M.K., Daemi H., and Baharvand H., Co-Delivery of Minocycline
    and Paclitaxel from Injectable Hydrogel for Treatment of Spinal Cord Injury, J. Control. Release, 321, 145-158, 2020.
  26. Weller C.D., Team V., and Sussman G., First-Line Interactive Wound Dressing Update: A Comprehensive Review of the
    Evidence, Front. Pharmacol., 11, 1-13, 2023.
  27. Jung J.A., Han S.K., Jeong S.H., Dhong E.S., Park K.G., and Kim W.K., In vitro Evaluation of Betafoam, A New Polyurethane
    Foam Dressing, Adv. Skin. Wound Care, 30, 262-271, 2017.
  28. Kheirabadi B., Evaluation of Topical Hemostatic Agents for Combat Wound Treatment, US Army Med. Dep. J., 25-37, 2011.
  29. Emmez Ö.M.E.R., Tonge M., Tokgoz N., Durdag E., Işik Gönül İ.P.E.K., and Ceviker N., Radiological and Histopathological Comparison of Microporous Polysaccharide Hemospheres and Oxidized Regenerated Cellulose in the Rabbit Brain: A Study of Efficacy and Safety, Turk. Neurosurg., 20, 2010.
  30. Gao Y., Qiu, Z., Liu L., Li M., Xu B., Yu D., Qi D., and Wu J., Multifunctional Fibrous Wound Dressings for Refractory Wound Healing. J. Polym. Sci., 60, 2191-2212, 2022.
  31. Chen Y.W., Lu C.H., Shen M.H., Lin S.Y., Chen C.H., Chuang C.K., and Ho C.C., In Vitro Evaluation of the Hyaluronic
    Acid/Alginate Composite Powder for Topical Haemostasis and Wound Healing, Int. Wound J., 17, 394-404, 2020.
  32. Noruzi M., Ghasemi L., and Morshed M., Fabrication of Antibacterial Poly(vinyl alcohol) Microfibers Mat for Wound Dressing Application, Iran. J. Polym. Sci. Technol. (Persian), 29, 15-25, 2016.
  33. Contardi M., Kossyvaki D., Picone P., Summa M., Guo X., Heredia-Guerrero J.A., Giacomazza D., Carzino R., Goldoni L., Scoponi G., and Rancan F., Electrospun Polyvinylpyrrolidone (PVP) Hydrogels Containing Hydroxycinnamic Acid Derivatives
    as Potential Wound Dressings, Chem. Eng. J., 409, 128144, 2021.
  34. Amer T.M., Sabet M.M., Omer A.M., Abbas E., Eid A.I., Mohy-Eldin M.S., and Hassan M.A., Hemostatic and Antibacterial PVA/Kaolin Composite Sponges Loaded with Penicillin-Streptomycin for Wound Dressing Applications, Sci. Rep., 11, 1-15, 2021.
  35. Lu J., Chen Y., Ding M., Fan X., Hu J., Chen Y., Li J., Li Z., and Liu W., A 4Arm-PEG Macromolecule Crosslinked
    Chitosan Hydrogels as Antibacterial Wound Dressing, Carbohydr. Polym., 277, 118871, 2022.
  36. Pahlevanneshan Z., Deypour M., Kefayat A., Rafienia M., Sajkiewicz P., Esmaeely Neisiany R., and Enayati M.S., Polyurethane-Nanolignin Composite Foam Coated with Propolis as a Platform for Wound Dressing: Synthesis and Characterization,
    Polymers, 13, 3191, 2021.
  37. Mohammadi A., Abdolvand H., Ayati Najafabadi S.A., Nejaddehbashi F., Beigi-Boroujeni S., Makvandi P., and Daemi H.,
    Antibacterial Host-Guest Intercalated LDH-Adorned Polyurethane for Accelerated Dermal Wound Healing, ACS Appl. Bio Mater., 5, 5800-5815, 2022.
  38. Minsart M., Van Vlierberghe S., Dubruel P., and Mignon A., Commercial Wound Dressings for the Treatment of Exuding Wounds: An In-Depth Physico-Chemical Comparative Study, Burns Trauma, 10, 2022.
  39. Fan T. and Daniels R., Preparation and Characterization of Electrospun Polylactic Acid (PLA) Fiber Loaded with Birch Bark Triterpene Extract for Wound Dressing, AAPS PharmSciTech., 22, 1-9, 2021.
  40. Naseri-Nosar M. and Ziora Z.M., Wound Dressings from Naturally-Occurring Polymers: A Review on Homopoly-
    saccharide-Based Composites, Carbohydr. Polym., 189, 379-398, 2018.
  41. Mathew-Steiner S.S., Roy S., and Sen C.K., Collagen in Wound Healing, Engineering, 8, 2021.
  42. Zhu T., Mao J., Cheng Y., Liu H., Lv L., Ge M., Li S., Huang J., Chen Z., Li H., and Yang L., Recent Progress of Polysaccharide-
    Based Hydrogel Interfaces for Wound Healing and Tissue Engineering, Adv. Mater. Interfaces, 6, 1900761, 2019.
  43. Thomas A., Harding K.G., and Moore K., Alginates from Wound Dressings Activate Human Macrophages to Secrete Tumour Necrosis Factor-α, Biomaterials, 21, 1797-1802, 2000.
  44. Sai C.J., Hsu L.R., and Fang J.Y., Chitosan Hydrogel as a Base for Transdermal Delivery of Berberine and Its Evaluation in Rat Skin, Biol. Pharm. Bull., 22, 397-401, 1999.
  45. Howling G.I., Dettmar P.W., Goddard P.A., Hampson F.C., Dornish M., and Wood E.J., The Effect of Chitin and Chitosan on the Proliferation of Human Skin Fibroblasts and Keratinocytes In Vitro, Biomaterials, 22, 2959-2966, 2001.
  46. Porporatto C., Bianco I.D., Riera C.M., and Correa S.G., Chitosan Induces Different L-Arginine Metabolic Pathways in Resting and Inflammatory Macrophages, Biochem. Biophys. Res. Commun., 304, 266-272, 2003.
  47. Kean T. and Thanou M., Biodegradation, Biodistribution and Toxicity of Chitosan, Adv. Drug Deliv. Rev., 62, 3-11, 2010.
  48. Sahraneshin-Samani F., Kazemi-Ashtiani M., Karimi H., Shiravandi A., Baharvand H., and Daemi H., Regioselective
    Sulfated Chitosan Produces a Biocompatible and Antibacterial Wound Dressing with Low Inflammatory Response, Biomater. Adv., 139, 213020, 2022.
  49. Ishihara M., Obara K., Nakamura S., Fujita M., Masuoka K., Kanatani Y., Takase B., Hattori H., Morimoto Y., Ishihara M., and Maehara T., Chitosan Hydrogel as a Drug Delivery Carrier to Control Angiogenesis, J. Artif. Organs, 9, 8-16, 2006.
  50. Abatangelo G., Vindigni V., Avruscio G., Pandis L., and Brun P., Hyaluronic Acid: Redefining Its Role, Cells, 9, 1743, 2020.
  51. D’Agostino A., Stellavato A., Busico T., Papa A., Tirino V., Papaccio, G., La Gatta A., De Rosa M., and Schiraldi C., In Vitro Analysis of the Effects on Wound Healing of High-and Low-Molecular Weight Chains of Hyaluronan and Their Hybrid
    H-HA/L-HA Complexes, BMC Cell Biol., 16, 1-15, 2015.
  52. Mirshafiei M.S. and Boddohi S., Preparation of Hyaluronic Acid-Aloevera Nanoparticles for Sustained Delivery of Doxycycline, Iran. J. Polym. Sci. Technol. (Persian), 31, 539-550, 2019.
  53. Eleni Papakonstantinou G.K. and Roth M., Hyaluronic Acid: A Key Molecule in Skin Aging, Dermatoendocrinol, 4, 253-258, 2012.
  54. Graça M.F., Miguel S.P., Cabral C.S., and Correia I.J., Hyaluronic Acid-Based Wound Dressings: A Review, Carbohydr.
    Polym
    ., 241, 116364, 2020.
  55. Laurano R., Boffito M., Ciardelli G., and Chiono V., Wound Dressing Products: A Translational Investigation from the Bench to the Market, Eng. Regen., 3, 182-200, 2022.
  56. Hintze V., Schnabelrauch M., and Rother S., Chemical Modfication of Hyaluronan and Their Biomedical Applications,
    Front. Chem., 10, 830671, 2022.
  57. Fakhari A. and Berkland C., Applications and Emerging Trends of Hyaluronic Acid in Tissue Engineering, As a Dermal Filler and in Osteoarthritis Treatment, Acta Biomater., 9, 7081-7092, 2013.
  58. Gupta R.C., Lall R., Srivastava A., and Sinha A., Hyaluronic Acid: Molecular Mechanisms and Therapeutic Trajectory, Front. Vet. Sci., 6, 192, 2019.
  59. Necas J.B.L.B.P., Bartosikova L., Brauner P., and Kolar J.J.V.M., Hyaluronic Acid (Hyaluronan): A Review, Vet. Med., 53, 397-411, 2008.
  60. Stern R., Kogan G., Jedrzejas M.J., and Šoltés L., The Many Ways to Cleave Hyaluronan, Biotechnol. Adv. 25, 537-557, 2007.
  61. Longinotti C., The Use of Hyaluronic Acid Based Dressings to Treat Burns: A Review, Burns Trauma., 2, 162-168, 2014.
  62. Antonio C.R. and Trídico L.A., The Importance of Interaction between Hyaluronic Acid and CD44 Receptor, Surg. Cosmet. Dermatology, 13, 1-6, 2021.
  63. Stern R., Kogan G., Jedrzejas M.J., and Šoltés, L., Role of Hyaluronic Acids and Potential as Regenerative Biomaterials in Wound Healing, ACS Appl. Bio Mater., 4, 311-324, 2021.
  64. Stern R., Asari A.A., and Sugahara K.N., Hyaluronan Fragments: An Information-Rich System, Eur. J. Cell Biol., 85, 699-715, 2006.
  65. Orellana S.L., Giacaman A., Pavicic F., Vidal A., Moreno-Villoslada I. and Concha M., Relevance of Charge Balance and Hyaluronic Acid on Alginate-Chitosan Sponge Microstructure and Its Influence on Fibroblast Growth, J. Biomed. Mater. Res. Part A, 104, 2537–2543, 2016.
  66. Liu L., Liu D., Wang M., Du G., and Chen J., Preparation and Characterization of Sponge-Like Composites by Cross-Linking Hyaluronic Acid and Carboxymethylcellulose Sodium with Adipic Dihydrazide, Eur. Polym. J., 43, 2672-2681, 2007.
  67. Zhou J., Zhang B., Liu X., Shi L., Zhu J., Wei D., Zhong J., Sun G., and He D., Facile Method to Prepare Silk Fibroin/
    Hyaluronic Acid Films for Vascular Endothelial Growth Factor Release, Carbohydr. Polym., 143, 301-309, 2016.
  68. Abednejad A., Ghaee A., Nourmohammadi J., and Mehrizi A.A., Hyaluronic Acid/Carboxylated Zeolitic Imidazolate Framework Film with Improved Mechanical and Antibacterial Properties, Carbohydr. Polym., 222, 115033, 2019.
  69. Lam J., Truong N.F., and Segura T., Design of Cell-Matrix Interactions in Hyaluronic Acid Hydrogel Scaffolds, Acta Biomater.,
    10, 1571-1580, 2014.
  70. Wu S., Deng L., Hsia H., Xu K., He Y., Huang Q., Peng Y., Zhou Z., and Peng C., Evaluation of Gelatin-Hyaluronic Acid Composite Hydrogels for Accelerating Wound Healing, J. Biomater. Appl., 31, 1380-1390, 2017.
  71. Ying H., Zhou J., Wang M., Su D., Ma Q., Lv G., and Chen J., In Situ Formed Collagen-Hyaluronic Acid Hydrogel as
    Biomimetic Dressing for Promoting Spontaneous Wound Healing, Mater. Sci. Eng. C, 101, 487-498, 2019.
  72. Shi L., Zhao Y., Xie Q., Fan C., Hilborn J., Dai J., and Ossipov D.A., Moldable Hyaluronan Hydrogel Enabled by Dynamic Metal-Bisphosphonate Coordination Chemistry for Wound Healing, Adv. Healthc. Mater., 1700973, 1-9, 2017.
  73. Akbari Taemeh M., Shiravandi A., Asadi Korayem M., and Daemi H., Fabrication Challenges and Trends in Biomedical Applications of Alginate Electrospun Nanofibers, Carbohydr. Polym., 228, 115419, 2020.
  74. Liu Y., Li T., Han Y., Li F., and Liu Y., Recent Development of Electrospun Wound Dressing, Curr. Opin. Biomed. Eng., 17, 100247, 2021.
  75. Kenar H., Ozdogan C.Y., Dumlu C., Doger E., Kose G.T., and Hasirci V., Microfibrous Scaffolds from Poly(L-lactide-co-ε-caprolactone) Blended with Xeno-Free Collagen/Hyaluronic Acid for Improvement of Vascularization in Tissue Engineering Applications, Mater. Sci. Eng. C, 97, 31-44, 2019.
  76. Chanda A., Adhikari J., Ghosh A., Chowdhury S.R., Thomas S., Datta P., and Saha P., Electrospun Chitosan/Poly-
    caprolactone-Hyaluronic Acid Bilayered Scaffold for Potential Wound Healing Applications, Int. J. Biol. Macromol., 116, 774-785, 2018.
  77. Figueira D.R., Miguel S.P., de Sa K.D., and Correia I.J., Production and Characterization of Polycaprolactone-Hyaluronic Acid/Chitosan-Zein Electrospun Bilayer Nanofibrous Membrane for Tissue Regeneration, Int. J. Biol. Macromol., 93, 1100-1110, 2016.
  78. Watson A.L., Eckhart K.E., Wolf M.E., and Sydlik S.A., Hyaluronic Acid-Based Antibacterial Hydrogels for Use as Wound Dressings, ACS Appl. Bio Mater., 5, 5608-5616, 2022.
  79. Anisha B.S., Biswas R., Chennazhi, K.P., and Jayakumar R., Chitosan-Hyaluronic Acid/Nano Silver Composite Sponges for Drug Resistant Bacteria Infected Diabetic Wounds, Int. J. Biol. Macromol., 62, 310-320, 2013.
  80. Abou-Okeil A., Fahmy H.M., El-Bisi M.K., and Ahmed-Farid O.A., Hyaluronic Acid/Na-Alginate Films as Topical Bioactive Wound Dressings, Eur. Polym. J., 109, 101-109, 2018.
  81. Shiravandi A., Kazemi Ashtiani M., and Daemi H., Fabrication of Affinity-Based Drug Delivery Systems Based on Electrospun Chitosan Sulfate/Poly(vinyl alcohol) Nanofibrous Mats, Int. J. Biol. Macromol., 252, 126438, 2023.
  82. Lin Y., Xu J., Dong Y., Wang Y., Yu C., Li Y., Zhang C., Chen Q., Chen S., and Peng Q., Drug-Free and Non-Crosslinked Chitosan/Hyaluronic Acid Hybrid Hydrogel for Synergistic Healing of Infected Diabetic Wounds, Carbohydr. Polym., 314, 120962, 2023.
  83. Sahiner N., Sagbas S., Sahiner M., and Ayyala R.S., Polyethyleneimine Modified Poly(hyaluronic acid) Particles with Controllable Antimicrobial and Anticancer Effects, Carbohydr. Polym., 159, 29-38, 2017.
  84. Duan Y., Li K., Wang H., Wu T., Zhao Y., Li H., Tang H., and Yang W., Preparation and Evaluation of Curcumin Grafted
    Hyaluronic Acid Modified Pullulan Polymers as a Functional Wound Dressing Material, Carbohydr. Polym., 238, 116195, 2020.
  85. Lin Z., Wu T., Wang W., Li B., Wang M., Chen L., Xia H., and Zhang T., Biofunctions of Antimicrobial Peptide-Conjugated Alginate/Hyaluronic Acid/Collagen Wound Dressings Promote Wound Healing of a Mixed-Bacteria-Infected Wound, Int. J. Biol. Macromol., 140, 330-342, 2019.
  86. Xu J.W., Yao K., and Xu Z.K., Nanomaterials with a Photothermal Effect for Antibacterial Activities: An Overview, Nanoscale, 11, 8680-8691, 2019.
  87. Zhao X., Wu H., Guo B., Dong R., Qiu Y., and Ma P.X., Antibacterial Anti-Oxidant Electroactive Injectable
    Hydrogel as Self-Healing Wound Dressing with Hemostasis andAdhesiveness for Cutaneous Wound Healing, Biomaterials, 122, 34-47, 2017.
  88. Matsumoto Y. and Kuroyanagi Y., Development of a Wound Dressing Composed of Hyaluronic Acid Sponge Containing Arginine and Epidermal Growth Factor, J. Biomater. Sci. Polym. Ed., 21, 715-726, 2010.
  89. Caravaggi C., De Giglio R., Pritelli C., Sommaria M., Dalla Noce S., Faglia E., Mantero M., Clerici G., Fratino P., Dalla Paola L., and Mariani G., Hyaff 11– Based Autologous Dermal and Epidermal Grafts in the Treatment of Noninfected Diabetic Plantar and Dorsal Foot Ulcers, Diabetes Care, 26, 2853-2859, 2003.
  90. “Medline.”m,Available:ttps://www.medline.com/media/catalog/Docs/MKT /LIT309_ BRO_ Chronic Wounds_19118946.
  91. Mirhaj M., Labbaf S., Tavakoli M., and Seifalian A.M., Emerging Treatment Strategies in Wound Care, Int. Wound J., 7, 1-21, 2022.
  92. Colletta A.D.L.V. and Dioguardi D., A Trial to Assess the Efficacy and Tolerability of Hyalofill-F in Non-Healing Venous Leg Ulcers, J. Wound Care, 12, 357-361, 2003.
  93. Anika Therapeutics Handouts, http://juliekim.me/portfolio/anika-handouts, Available 2013.
  94. Mahedia M., Shah N., and Amirlak B., Clinical Evaluation of Hyaluronic Acid Sponge with Zinc Versus Placebo for Scar Reduction After Breast Surgery, Plast. Reconstr. Surg.-Glob. Open, 4, 1-8, 2016.
  95. De Francesco F., De Francesco M., and Riccio M., Hyaluronic Acid/Collagenase Ointment in the Treatment of Chronic
    Hard-to-Heal Wounds: An Observational and Retrospective Study, J. Clin. Med., 11, 537, 2022.
  96. Russo R., Carrizzo A., Barbato A., Rasile B.R., Pentangelo P., Ceccaroni A., Marra C., Alfano C., and Losco L., Clinical Evaluation of the Efficacy and Tolerability of Rigenase® and Polyhexanide (Fitostimoline®plus) vs. Hyaluronic Acid and Silver Sulfadiazine (Connettivina®Bio Plus) for the Treatment of Acute Skin Wounds: A Randomized Trial, J. Clin. Med., 11, 2518, 2022.
  97. Alven S. and Aderibigbe B.A., Hyaluronic Acid-Based Scaffolds as Potential Bioactive Wound Dressings, Polymers, 13, 2102, 2021.
  98. Global Wound Dressing Market Size by Product Type, By Application, By End-User, By Geographic Scope and Forecast,
    https://www.verifiedmarketresearch.com/product/wound-dressing- market, Available in May 2024.
  99. U.S. Advanced Wound Care Market Size, Share and Trends Analysis Report By Product (Foam, Film, Hydrocolloid,
    Alginate), By Type (Chronic, Acute), By Region, Competitive Insights, and Segment Forecasts (2019-2026), https://www.grandviewresearch.com/ industry analysis/us-advanced-wound-care-market, Available in June 2022.
  100. Hyaluronic Acid Raw Material Market Size (2021), https://www.grandviewresearch.com/industry-analysis/hyaluronic-acid-ha-raw materialmarket#:~:text=The global hyaluronic acid raw,USD 7.25 Billion by 2024, Available in February 2022.