استخراج سلولوز از پوسته‌ ذرت و اصلاح آن با چارچوب فلز-آلی برای کاربرد درحذف آلاینده‌ دارویی

نوع مقاله : پژوهشی

نویسندگان

تبریز، دانشگاه تبریز، دانشکده شیمی، گروه شیمی کاربردی، آزمایشگاه تحقیقات مواد پلیمری پیشرفته، کد پستی 5166616471

چکیده

فرضیه: امروزه استفاده گسترده از داروها در مراقبت‌های بهداشتی  به جریان قابل توجه آن‌ها به محیط‌های آبی منجر شده است که بر سلامت محیط زیست آثار منفی می‌گذارد. یکی از روش‌هایی که برای حذف داروها از آب استفاده می‌شود، روش جذب سطحی شیمیایی است. این روش به‌دلیل داشتن عملکرد ساده و مقرون‌به‌صرفه‌بودن به‌عنوان روشی کارآمد برای حذف داروها از آب پیشنهاد می‌شود.
روش‌ها: در این مطالعه، ابتدا سلولوز از پوسته‌ ذرت استخراج شد. سپس با  نانوذرات اکسیدآهن و روش هم‌رسوبی مغناطیسی شد. سپس، به‌منظور افزایش سطح ویژه و کارایی جذب، با چارچوب فلز-آلی آلومینیم ( سلولوزFe3O4/Al-MOF) اصلاح شد. از جاذب سلولوز مغناطیسی اصلاح‌شده با چارچوب فلز-آلی به‌عنوان جاذب زیستی برای حذف داروی دوکسوروبیسین از محیط‌های آبی استفاده شد. ساختار شیمیایی، بلورینگی، شکل‌شناسی، اندازه ذرات و سایر خواص جاذب با استفاده از آزمون‌های SEM ،XRD ،FT-IR ،EDS و VSM  بررسی و تأیید شد.
یافته‌ها: پارامترهای مؤثر بر کارایی جذب حداکثری دوکسوروبیسین از جمله pH، غلظت اولیه، مقدار جاذب و زمان تماس با روش آماری تاگوچی بهینه شد و در شرایط بهینه‌ pH برابر 6، غلظت اولیه‌ 20ppm، مقدار جاذب 2g/L و در زمان 80 دقیقه، بازده جذب 88% به‌دست آمد. هم‌دمای جذب از مدل Langmuir پیروی می‌کند و سینتیک جذب با مدل شبه‌مرتبه اول مطابقت دارد و حداکثر ظرفیت جذب طبق Langmuir مدل،96.15mg/g پیش‌بینی شد. افزون بر این، مطالعه‌ ترمودینامیکی نشان داد، فرایند جذب داروی دوکسوروبیسین با جاذب خودبه‌خودی، گرمازا و با کاهش آنتروپی همراه است. همچنین نتایج بررسی جذب-واجذب نشان داد، جاذب پایداری بسیار خوبی دارد؛ زیرا می‌توان آن را برای هفت چرخه، دوباره استفاده کرد، بدون اینکه کارایی آن کاهش یابد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Cellulose extraction from corn husk and its modification with metal-organic framework and its use to remove pharmaceutical pollutants

نویسندگان [English]

  • Alireza Hazrati
  • mehdi barzegarzadeh
  • Mohammad Sadegh Aminifazl
Advanced Polymer Material Research Laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Postal Code: 5166616471, Tabriz, Iran
چکیده [English]

Hypothesis: Today, the widespread use of drugs in health care has led to their significant flow into aquatic environments, which has negative effects on the health of the environment. One of the methods used to remove drugs from water is the chemical adsorption method, which is suggested as an efficient method for removing drugs from water due to its simple operation and cost-effectiveness.
Methods: In this study, cellulose was extracted from corn husk and then it was magnetized using iron oxide nanoparticles by coprecipitation method and in order to increase the specific surface area and adsorption efficiency, it was modified with aluminum metal-organic framework (Cellulose@Fe3O4/Al-MOF). Magnetic cellulose adsorbent modified with metal-organic framework was used as a biosorbent to remove the drug doxorubicin from aqueous media. The chemical structure, crystallinity, morphology, particle size and other properties of the absorbent were investigated and confirmed using SEM, XRD, FT-IR and VSM analyses.
Findings: The parameters affecting the maximum absorption of doxorubicin including pH, initial concentration, adsorbent amount and contact time were optimized using Taguchi's statistical method and in optimal conditions of pH = 6, the initial concentration was equal to 20 ppm, the amount of adsorbent was equal to 2 g/L, and in 80 minutes, the absorption capacity was 88%. The isotherm follows the Langmuir model, and the kinetics corresponds to the pseudo-first-order model, and the maximum absorption capacity was predicted as 96.15 mg/g according to the Langmuir model. In addition, the thermodynamic study showed that the adsorption process of doxorubicin drug by magnetic cellulose modified with metal-organic framework adsorbent is spontaneous, exothermic and associated with entropy reduction. Also, the results of the adsorption-desorption study showed that the adsorbent has very good stability; Because it can be reused for 7 cycles without losing its effectiveness.

کلیدواژه‌ها [English]

  • Metal-organic framework
  • doxorubicin
  • iron oxide nanoparticles
  • cellulose
  • adsorption
  1. Singh J., Yadav P., Pal A.K., and Mishra V., Water Pollutants: Origin and Status, In Sensors in Water Pollutants Monitoring: Role of Material, Springer Singapore, 5-20, 2020.
  2. Bhadra B.N., Ahmed I., Kim S., and Jhung S.H., Adsorptive
    Removal of Ibuprofen and Diclofenac from Water Using
    Metal-Organic Framework-Derived Porous Carbon, Chem. Eng. J., 314, 50-58, 2017.
  3. Hasan Z., Jeon J., and Jhung S.H., Adsorptive Removal of Naproxen and Clofibric Acid from Water Using Metal-Organic Frameworks, J. Hazard. Mater., 209, 151-157, 2012.
  4. Song J.Y. and Jhung S.H., Adsorption of Pharmaceuticals and Personal Care Products Over Metal-Organic Frameworks
    Functionalized with Hydroxyl Groups: Quantitative Analyses of H-bonding in Adsorption, Chem. Eng. J., 322, 366-374, 2017.
  5. Hasan Z., Choi E.-J., and Jhung S.H., Adsorption of Naproxen and Clofibric Acid Over a Metal–Organic Framework MIL-101 Functionalized with Acidic and Basic Groups, Chem. Eng. J., 219, 537-544, 2013.
  6. Reynel-Avila H.E., Mendoza-Castillo D.I., Bonilla-Petriciolet A., and Silvestre-Albero J., Assessment of Naproxen Adsorption
    on Bone Char in Aqueous Solutions Using Batch and Fixed-Bed
    Processes, J. Molecul. Liq., 209, 187-195, 2015.
  7. Althumayri K., Guesmi A., Abd El-Fattah W., Khezami L., Soltani T., Hamadi N.B., and Shahat A., Effective Adsorption and Removal of Doxorubicin from Aqueous Solutions Using Mesostructured Silica Nanospheres: Box–Behnken Design Optimization and Adsorption Performance Evaluation, ACS Omega, 8, 14144-14159, 2023.
  8. Karimzadeh S., Safaei B., and Jen T.-C., Theorical Investigation
    of Adsorption Mechanism of Doxorubicin Anticancer Drug on the Pristine and Functionalized Single-Walled Carbon Nanotube Surface as a Drug Delivery Vehicle: A DFT Study, J. Molecul. Liq., 322, 114890, 2021.
  9. Vosoughi F., Habibi-Yangjeh A., Asadzadeh-Khaneghah S., Ghosh S., and Maiyalagan T., Novel Ternary g-C3N4 Nanosheet/Ag2MoO4/AgI Photocatalysts: Impressive Photocatalysts for Removal of Various Contaminants, J. Photochem. Photobiol. A: Chem., 403, 112871, 2020.
  10. Azhar M.R., Abid H.R., Sun H., Periasamy V., Tadé M.O., and Wang S., Excellent performance of Copper Based Metal
    Organic Framework in Adsorptive Removal of Toxic Sulfonamide
    Antibiotics from Wastewater, J. Colloid Interface Sci., 478, 344-352, 2016.
  11. Alizadeh M., Jalilnejad E., and Rafiee R., Application of
    Hydrogels in Adsorptive Removal of Aqueous Pollutants, Iran. J. Polym. Sci. Technol. (Persian), 31, 499-518, 2019.
  12. Carino I.S., Pasqua L., Testa F., Aiello R., Puoci F., Iemma F., and Picci N., Silica-Based Mesoporous Materials as Drug
    Delivery System for Methotrexate Release, Drug Deliv., 14, 491-495, 2007.
  13. Aghajanzadeh M., Zamani M., Molavi H., Khieri Manjili H., Danafar H., and Shojaei A., Preparation of Metal–Organic Frameworks UiO-66 for Adsorptive Removal of Methotrexate from Aqueous Solution, J. Inorg. Organomet. Polym. Mater., 28, 177-186, 2018.
  14. Zamani M., Aghajanzadeh M., Molavi H., Danafar H., and Shojaei A., Thermally Oxidized Nanodiamond: An Effective Sorbent for Separation of Methotrexate from Aqueous Media: Synthesis, Characterization, In Vivo and In Vitro Biocompatibility Study, J. Inorg. Organomet. Polym. Mater., 29, 701-709, 2019.
  15. Baccar R., Sarrà M., Bouzid J., Feki M., and Blánquez P.,
    Removal of Pharmaceutical Compounds by Activated Carbon Prepared from Agricultural By-Product, Chem. Eng. J., 211, 310-317, 2012.
  16. Molavi H., Moghimi H., and Taheri R.A., Zr-Based Mofs with High Drug Loading for Adsorption Removal of Anti-Cancer Drugs: A Potential Drug Storage, Appl. Organomet. Chem., 34, e5549, 2020.
  17. Francesca P., Sara M., and Luigi T., New Biosorbent Materials for Heavy Metal Removal: Product Development Guided by Active Site Characterization, Water Res., 42, 2953-2962, 2008.
  18. Klemm D., Heublein B., Fink H.P., and Bohn A., Cellulose: Fascinating Biopolymer and Sustainable Raw Material, Angew. Chem. Int. Ed., 44, 3358-3393, 2005.
  19. Börjesson M. and Westman G., Crystalline Nanocellulose-Preparation, Modification, and Properties, In Cellulose-Fundamental Aspects and Current Trends, InTech, 2015.
  20. Moon R.J., Martini A., Nairn J., Simonsen J., and Youngblood J., Cellulose Nanomaterials Review: Structure, Properties and Nanocomposites, Chem. Soc. Rev., 40, 3941-3994, 2011.
  21. Yang X., Han F., Xu C., Jiang S., Huang L., Liu L., and Xia Z.,
    Effects of Preparation Methods on the Morphology and Properties
    of Nanocellulose (NC) Extracted from Corn Husk, Indust. Crops Product., 109, 241-247, 2017.
  22. Polshettiwar V., Baruwati B., and Varma R.S., Nanoparticle-Supported and Magnetically Recoverable Nickel Catalyst: A Robust
    and Economic Hydrogenation and Transfer Hydrogenation
    Protocol, Green Chem., 11, 127-131, 2009.
  23. Aghayi-Anaraki M. and Safarifard V., Fe3O4@MOF Magnetic Nanocomposites: Synthesis and Applications, Eur. J. Inorg. Chem., 2020, 1916-1937, 2020.
  24. Kuppler R.J., Potential Applications of Metal-Organic Frameworks, Coordination Chem. Rev., 253, 3042-3066, 2009.
  25. Liu R., Chi L., Wang X., Wang Y., Sui Y., Xie T., and Arandiyan
    H., Effective and Selective Adsorption of Phosphate from Aqueous Solution via Trivalent-Metals-Based Amino-MIL-101 MOFs, Chem. Eng. J., 357, 159-168, 2019.
  26. Serra-Crespo P., Ramos-Fernandez E.V., Gascon J., and Kapteijn
    F., Synthesis and Characterization of an Amino Functionalized MIL-101 (Al): Separation and Catalytic Properties, Chem. Mater.,
    23, 2565-2572, 2011.
  27. Bezerra R.D., Silva M.M., Morais A.I., Santos M.R., Airoldi C., and Silva Filho E.C., Natural Cellulose for Ranitidine Drug Removal from Aqueous Solutions, J. Env. Chem. Eng., 2, 605-611, 2014.
  28. Li Y., Wang Y., He L., Meng L., Lu H., and Li X., Preparation of Poly(4-vinylpyridine)-Functionalized Magnetic Al-MOF for the Removal of Naproxen from Aqueous Solution, J. Hazard.Mater., 383, 121144, 2020.
  29. Yu L., Luo Z.F., Zhang Y.Y., Wu S.C., Yang C., and Cheng J.H., Contrastive Removal of Oxytetracycline and Chlortetracycline from Aqueous Solution on Al-MOF/GO Granules, Env. Sci. Pollut. Res., 26, 3685-3696, 2019.
  30. Fu H., Wang R., Xu Q., Laipan M., Tang C., Zhang W., and Ling L., Facile Construction of Fe/Pd-Doped Graphite Carbon Nitride for Effective Removal of Doxorubicin: Performance, Mechanism and Degradation Pathways, Appl. Catal. B: Env., 299, 120686, 2021.
  31. El-Metwaly M.N., Katouah A.H., El-Desouky M., El-Bindary A., and El-Bindary M., Fabricating of Fe3O4@Ag-MOF Nanocomposite and Evaluating Its Adsorption Activity for Removal of Doxorubicin, J. Environ. Sci. Health, Part A, 57, 1099-1115, 2022.
  32. Kampeerapappun P., Extraction and Characterization of
    Cellulose Nanocrystals Produced by Acid Hydrolysis from Corn Husk, J. Metal., Mater. Mineral., 25, 2015.
  33. Alterary S.S. and AlKhamees A., Synthesis, Surface Modification, and Characterization of Fe3O4@SiO2 Core@Shell Nanostructure, Green Processing and Synth., 10, 384-391, 2021.
  34. Wang Y., He L., Li Y., Jing L., Wang J., and Li X., Ag NPs Supported on the Magnetic Al-MOF/PDA as Nanocatalyst for the Removal of Organic Pollutants in Water, J. Alloys and Compounds, 828, 154340, 2020.
  35. Boruah P.K., Borah D.J., Handique J., Sharma P., Sengupta P., and Das M.R., Facile Synthesis and Characterization of Fe3O4 Nanopowder and Fe3O4/Reduced Graphene Oxide Nanocomposite for Methyl Blue Adsorption: A Comparative Study, J. Environ. Chem. Eng., 3, 1974-1985, 2015.
  36. Abd El Salam H., Bio-Sustainable Alternatives Synthesis of Nanoporous Activated Carbon@Al-MOF for the Adsorption of Hazardous Organic Dyes from Wastewater, Water Air Soil
    Pollut.
    , 234, 567, 2023.
  37. Chang Z., Gong X., Zeng L., Zhu Y., and Qi X., Magnetic Functionalized Zr-Based Mofs for Effective Adsorption of Au(III)from Aqueous Solution and Mechanism Study, SSRN J., 2022.
  38. Riyanti F., Hasanudin H., Rachmat A., Purwaningrum W., and Hariani P.L., Photocatalytic Degradation of Methylene Blue and Congo Red Dyes from Aqueous Solutions by Bentonite-Fe3O4 Magnetic, Commun. Sci. Technol., 8, 1-9, 2023.
  39. Huang Y., Meng F., Liu R., Yu Y., and Yu W., Morphology and Supramolecular Structure Characterization of Cellulose
    Isolated from Heat-Treated Moso Bamboo, Cellulose, 26, 7067-7078, 2019.
  40. Wei Y., Han B., Hu X., Lin Y., Wang X., and Deng X., Synthesis of Fe3O4 Nanoparticles and Their Magnetic Properties, Procedia
    Eng., 27, 632-637, 2012.
  41. Nakajima D., Kikuchi T., Yoshioka T., Matsushima H., Ueda M., Suzuki R.O., and Natsui S., A Superhydrophilic Aluminum Surface with Fast Water Evaporation Based on Anodic Alumina Bundle Structures via Anodizing in Pyrophosphoric Acid,
    Materials, 12, 3497, 2019.
  42. Yu Q., Wu P., Xu P., Li L., Liu T., and Zhao L., Synthesis of Cellulose/Titanium Dioxide Hybrids in Supercritical Carbon Dioxide, Green Chem., 10, 1061-1067, 2008.
  43. Harrache Z., Abbas M., Aksil T., and Trari M., Thermodynamic and Kinetics Studies on Adsorption of Indigo Carmine from Aqueous Solution by Activated Carbon, Microchem. J., 144, 180-189, 2019.
  44. Mohseni-Bandpi A., Al-Musawi T.J., Ghahramani E., Zarrabi M., Mohebi S., and Vahed S.A., Improvement of Zeolite
    Adsorption Capacity for Cephalexin by Coating with Magnetic Fe3O4 Nanoparticles, J. Molecul. Liq., 218, 615-624, 2016.
  45. Huang W. and Liu Z.M., Biosorption of Cd(II)/Pb(II) from Aqueous Solution by Biosurfactant-Producing Bacteria:
    Isotherm Kinetic Characteristic and Mechanism Studies,
    Colloids Surf., B: Biointerfaces, 105,113-119, 2013.
  46. Cai W., Guo M., Weng X., Zhang W., and Chen Z., Adsorption of Doxorubicin Hydrochloride on Glutaric Anhydride Functionalized Fe3O4@SiO2 Magnetic Nanoparticles, Mater. Sci. Eng., C, 98, 65-73, 2019.
  47. Roik N.V., Belyakova L.A., and Dziazko M.O., Adsorption of Antitumor Antibiotic Doxorubicin on MCM-41-Type Silica Surface, Adsorp. Sci. Technol., 35. 86-101, 2017.
  48. Weng X., Chen W., Cai W., Owens G., and Chen Z.,
    Synthesis of Ferroferric Oxide@ Silicon Dioxide/Cobalt-Based
    Zeolitic Imidazole Frameworks for the Removal of Doxorubicin
    Hydrochloride from Wastewater, J. Colloid and Interface Sci., 62, 108-120, 2022.
  49. Miao J., Zhang F., Takieddin M., Mousa S., and Linhardt R.J., Adsorption of Doxorubicin on Poly(methyl methacrylate)–
    Chitosan–Heparin-Coated Activated Carbon Beads, Langmuir, 28, 4396-4403, 2012.
  50. Rad L.R., Irani M., and Anbia M., Membrane Filtration and Adsorption of Doxorubicin Hydrochloride and Fluoxetine
    Hydrochloride from Water Using Polysulfone/MIL-125-NH2 (Ti) Nanofibrous Membranes, J. Molecul. Liq., 125429, 2024.
  51. Abasalta M., Asefnejad A., Khorasani M.T., Saadatabadi A.R., and Irani M., Adsorption and Sustained Release of Doxorubicin from N-Carboxymethyl Chitosan/Polyvinyl Alcohol/Poly(ε-caprolactone) Composite and Core-Shell Nanofibers, J. Drug Delivery Sci. Technol., 67, 102937, 2022.
  52. Olusegun S.J., Rodrigues G.L., Tiwari S., Krajewski M.,
    Mohallem N.D., Sobczak K., Donten M., and Krysinski P.,
    Removal of Doxorubicin Hydrochloride and Crystal Violet from Aqueous Solutions Using Spray-Dried Niobium Oxide Coated with Chitosan-Activated Carbon: Experimental and DFT
    Calculations, Int. J. Biolog. Macromol., 266, 131158, 2024.
  53. Weng X., Ma L., Guo M., Su Y., Dharmarajan R., and Chen Z., Removal of Doxorubicin Hydrochloride Using Fe3O4 Nano-
    particles Synthesized by Euphorbia Cochinchinensis Extract, Chem. Eng. J., 353, 482-489, 2018.