نوع مقاله : پژوهشی
نویسندگان
تبریز، دانشگاه تبریز، دانشکده کشاورزی، گروه علوم و صنایع غذایی
چکیده
کلیدواژهها
عنوان مقاله [English]
نویسندگان [English]
Studies were carried out on the effect of adding different percentages of montmorillonite (3, 5, 7 and 9% of starch weight) on the physical properties of potato starch-MMT nanocomposites. Heat resistance and mechanical properties of films were measured by differential scanning calorimetry (DSC) and tensile test. Nanoparticles distribution in polymer matrix was investigated using X-ray diffraction test (XRD). For investigation of water vapor resistance of film samples, moisture sorption and water vapor permeability (WVP) were measured. The results showed that the distribution of nanoparticles in the polymer matrix was exfoliated. WVP in pure starch films was 2.62×10-7 g/mhPa and with the addition of 9% MMT it was reduced to 1.43×10-7 g/mhPa. With the addition of nanoclay from zero to 9%, the ultimate tensile strength of nanocomposite samples was increased from 5.9 to 6.63 MPa and strain-to-break was decreased from 34.82 to 26.83%. But the rising trend was not significant for nanocomposite samples containing low concentrations of nanoclay (0-7%). The main reasons for the enhancement of mechanical properties due to the addition of nanoclay were to establish hydrogen bonding between polymer chains and clay layers, filling the empty spaces and increase the crystalline domains. Investigation of thermal resistance of nanocomposite samples showed that they have higher thermal resistance and melting point in comparison with pure starch films. With the addition of nanoclay from zero to 9%, the melting point of film samples was increased from 218 to 232.1°C. With the addition of nanoclay, probably the mobility of amylopectin chains decreased and crystalline domains increased. Also, with increasing nanoclay content, the glass transition temperature of nanocomposite samples was increased. This result corresponded to shrinkage in free volume and thus reduction in the polymer chains mobility in amorphous regions.
کلیدواژهها [English]